Seminar /aerospace/ en Seminar - OSIRIS-REx: To Bennu and Back - Sept. 13 /aerospace/2024/03/02/seminar-osiris-rex-bennu-and-back-mar-15 <span>Seminar - OSIRIS-REx: To Bennu and Back - Sept. 13</span> <span><span>Anonymous (not verified)</span></span> <span><time datetime="2024-09-03T07:42:13-06:00" title="Tuesday, September 3, 2024 - 07:42">Tue, 09/03/2024 - 07:42</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/aerospace/sites/default/files/styles/focal_image_wide/public/article-thumbnail/tag_beauty_shot_png.png?h=854a7be2&amp;itok=f9xSSGkB" width="1200" height="600" alt="Rendering of OSIRIS-REx at Bennu"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/aerospace/taxonomy/term/179"> Seminar </a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-content-media ucb-article-content-media-above"> <div> <div class="paragraph paragraph--type--media paragraph--view-mode--default"> </div> </div> </div> <div class="ucb-article-text d-flex align-items-center" itemprop="articleBody"> <div> <div class="align-right image_style-medium_750px_50_display_size_"> <div class="imageMediaStyle medium_750px_50_display_size_"> <img loading="lazy" src="/aerospace/sites/default/files/styles/medium_750px_50_display_size_/public/article-image/six.png?itok=MreODLoB" width="750" height="493" alt="The six speakers"> </div> </div> <p class="text-align-center lead">Friday, Sept. 13<br>10:40 a.m. - Seminar in AERO 120<br>11:30 a.m. - Panel Discussion / Q&amp;A in AERO 111</p><p>This seminar will recount the two-year proximity operations and remote sensing campaign at Bennu, including the dramatic sample collection event and the events leading to the landing of the sample capsule in Utah.</p><p>A panel discussion will follow, featuring members of the Navigation and Flight Operations Team from NASA Goddard, Lockheed Martin, and KinetX, who will each recount specific challenges faced during the mission and the innovations that were implemented to overcome them.</p><h2>Featured Speakers:</h2><p><strong>Dr. Michael C Moreau</strong> (AeroEngr MS’97, PhD’01) has worked at NASA’s Goddard Space Flight Center since 2001, and for over 10 years has served in leadership roles on the OSIRIS-REx Mission, as the manager of the Navigation Team during development, launch, and Bennu encounter, then as deputy project manager and leader of the sample return capsule recovery team. Mike’s Ph.D. research at CU focused on applications of the Global Positioning System in high Earth orbits, and contributed to the adoption of GPS on NASA missions such as GOES and Magnetosphere Multiscale. Before attending CU, he earned a BS in Mechanical Engineering at the University of Vermont.</p><p>Over three decades,&nbsp;<strong>Dr. Peter Antreasian </strong>(AeroEngr PhD’92) has made contributions to the navigation of NASA missions, Galileo, NEAR, Mars Odyssey, MER, Cassini-Huygens, GRAIL, and OSIRIS-REx. He began his career at the Jet Propulsion Laboratory in 1992, then joined KinetX 20 years later to lead the OSIRIS-REx navigation team. His expertise in orbit determination and navigation has been crucial in the success of these missions, including the first-ever landing of a spacecraft on an asteroid and the return of an asteroid sample to Earth.&nbsp;Peter earned his BS, MS and PhD in Aerospace Engineering, respectively,&nbsp;from Purdue, University of Texas and ֲý.</p><p><strong>Dr. Jason Leonard</strong> (AeroEngr MS’12, PhD’15) received his Ph.D. in Aerospace Engineering Sciences from the ֲý Boulder under the advisement of Dr. George Born. Currently, he is the Orbit Determination Group Supervisor at KinetX Aerospace and Deputy Navigation Team Chief for the NASA OSIRIS-REx and OSIRIS-APEX missions. He has been the Orbit Determination Team Lead for OSIRIS-REx since prior to Launch, during the duration of proximity operations and its successful acquisition of asteroid regolith, and through its return of the sample to Earth. For his contributions to the mission, Jason received the NASA Exceptional Engineering Achievement Medal and the PI Award of Distinction.</p><p><strong>Dr. Daniel Wibben </strong>is the Maneuver Design Group Supervisor for the Space Navigation and Flight Dynamics practice at KinetX Aerospace, Inc. Since joining the company, he has held the role of Maneuver and Trajectory lead for the OSIRIS-REx asteroid sample return mission. He has also been involved with the planning and operations of the LUCY, LunaH-Map, and DAVINCI missions. He received his B.S. in Aerospace and Mechanical Engineering, and M.S. and Ph.D. in Systems Engineering from the University of Arizona where his research was focused on nonlinear guidance techniques for asteroid proximity operations and planetary landing.</p><p><strong>Coralie D. Adam</strong> (AeroEngr MS’17) is the Optical Navigation Group Supervisor at KinetX. She holds a B.S. in aerospace engineering and astronomy from the University of Illinois, and an M.S. in aerospace engineering sciences from the ֲý at Boulder. During her 12 years at KinetX, Coralie has had lead roles on the navigation teams for NASA’s New Horizons, OSIRIS-REx, Lucy, and OSIRIS-APEX missions. In addition to leading the OSIRIS-REx optical navigation subsystem from development through sample collection, she co-convened the scientific investigation of Bennu’s active particle ejection phenomena. Coralie is currently the deputy Navigation Team Chief on NASA’s Lucy mission, and a navigation lead and science co-investigator on the OSIRIS-APEX extended mission to asteroid Apophis.</p><p><strong>Ryan Olds </strong>(AeroEngr BS’04, MS’09) has 19 years of experience in Guidance Navigation and Controls at Lockheed Martin Space supporting NASA Deep Space Exploration Missions.&nbsp; Ryan started his career working on the Pointing Control System for the Spitzer Space Telescope.&nbsp; He developed the reaction wheel control system for the twin-spacecraft GRAIL mission and supported test, integration, launch, and operations at the Moon.&nbsp; Ryan began working on OSIRIS-Rex in 2013 by developing control systems as well as the Natural Feature Tracking system which provided autonomous navigation for OSIRIS-REx during the mission’s sample acquisition phase.&nbsp; Ryan is currently a Guidance, Navigation and Controls manager and continues to support Deep Space Exploration missions such as OSIRIS-REx and DAVINCI.</p></div> </div> </div> </div> </div> <div>This seminar will recount the two-year proximity operations and remote sensing campaign at Bennu, including the dramatic sample collection event and the events leading to the landing of the sample capsule in Utah...</div> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Tue, 03 Sep 2024 13:42:13 +0000 Anonymous 5649 at /aerospace Seminar: Geometry and Mechanics in the Design of Aerospace Structures - Sept. 20 /aerospace/2024/09/17/seminar-geometry-and-mechanics-design-aerospace-structures-sept-20 <span>Seminar: Geometry and Mechanics in the Design of Aerospace Structures - Sept. 20</span> <span><span>Jeff Zehnder</span></span> <span><time datetime="2024-09-17T09:54:33-06:00" title="Tuesday, September 17, 2024 - 09:54">Tue, 09/17/2024 - 09:54</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/aerospace/sites/default/files/styles/focal_image_wide/public/article-thumbnail/2018_aerialfinalga_12.jpg?h=d7d95ce4&amp;itok=FluyEigI" width="1200" height="600" alt="CU Boulder campus seen from the air"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/aerospace/taxonomy/term/179"> Seminar </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/aerospace/taxonomy/term/419" hreflang="en">Francisco López Jiménez</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> <div> <div class="align-right image_style-small_500px_25_display_size_"> <div class="imageMediaStyle small_500px_25_display_size_"> <img loading="lazy" src="/aerospace/sites/default/files/styles/small_500px_25_display_size_/public/2024-09/engineering_portrait.cc160.jpg?itok=NaWFgj4a" width="375" height="525" alt="Francisco Lopez Jimenez"> </div> </div> <p class="text-align-center lead">Francisco López Jiménez&nbsp;<br>Assistant Professor, Smead Aerospace<br>Friday, Sept. 20 | 10:40 a.m. | AERO 111</p><p><strong>Abstract:</strong> Lightweight materials and structures are essential in the aerospace industry, from enabling the large space structures required to advance science missions to reducing fuel consumption. Their mechanical response is often a result of the interplay between material properties and their geometry across different scales. As an example, we will present our work on high strain composites for deployable structures. First, how thickness controls the mode of failure of composites under bending. Second, how the geometry of composite flexures determines the balance between stiffness when deployed and compliance for better stowage. Finally, how curvature in composite booms can enable the ultra-lightweight booms necessary for the next generation of solar sails. We will also discuss other examples of our work, from ablative composites in hypersonics to animal architecture.</p><p><strong>Bio: </strong>Francisco López Jiménez is an Assistant Professor in the Ann and H.J. Smead Department of Aerospace Engineering Sciences at the ֲý Boulder. He received his B.S. in Mechanical Engineering from the University of Seville, and a M.S. in Aerospace Engineering and a Ph.D. in Aeronautics from the California Institute of Technology. Before joining CU Boulder, he held postdoctoral research appointments at the Laboratoire de Mécanique des Solides (École Polytechnique, France) and the Massachusetts Institute of Technology. His research focuses on the design, fabrication, and analysis of lightweight materials and slender structures, with an emphasis in composite materials and deployable structures.</p></div> </div> </div> </div> </div> <div>Lightweight materials and structures are essential in the aerospace industry, from enabling the large space structures required to advance science missions to reducing fuel consumption...</div> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Tue, 17 Sep 2024 15:54:33 +0000 Jeff Zehnder 5794 at /aerospace Seminar: Advancing Spacecraft Trajectory Design, Analysis, and Prediction within Multi-Body Systems - Sept. 27 /aerospace/2024/09/17/seminar-advancing-spacecraft-trajectory-design-analysis-and-prediction-within-multi-body <span>Seminar: Advancing Spacecraft Trajectory Design, Analysis, and Prediction within Multi-Body Systems - Sept. 27</span> <span><span>Jeff Zehnder</span></span> <span><time datetime="2024-09-17T09:03:18-06:00" title="Tuesday, September 17, 2024 - 09:03">Tue, 09/17/2024 - 09:03</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/aerospace/sites/default/files/styles/focal_image_wide/public/callout/natasha_bosanac_20230829_jmp_2_jpg.jpg?h=9e33753c&amp;itok=L7vns7eL" width="1200" height="600" alt="Natasha Bosanac"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/aerospace/taxonomy/term/179"> Seminar </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/aerospace/taxonomy/term/263" hreflang="en">Natasha Bosanac News</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> <div> <div class="align-right image_style-medium_750px_50_display_size_"> <div class="imageMediaStyle medium_750px_50_display_size_"> <img loading="lazy" src="/aerospace/sites/default/files/styles/medium_750px_50_display_size_/public/callout/natasha_bosanac_20230829_jmp_2_jpg.jpg?itok=ro6PHVF2" width="750" height="500" alt="Natasha Bosanac"> </div> </div> <p class="text-align-center lead">Natasha Bosanac<br>Assistant Professor, Smead Aerospace<br>Friday, Sept. 27 | 10:40 a.m. | AERO 114</p><p><strong>Abstract: </strong>Our future in space involves miniaturized satellites for low-cost and rapid access to space, autonomously navigating spacecraft, on-orbit servicing for sustainability, in-space assembly of critical infrastructure, formations for multi-point measurements, and spacecraft visiting the farthest reaches of our solar system. Across this wide array of architectures, form factors, and destinations is a common thread: spacecraft operating within multi-body gravitational systems. These systems possess a chaotic solution space that has challenged several astrodynamics tasks, including 1) sufficiently understanding the broad array of possible motions for a spacecraft; 2) designing complex and constrained trajectories that exist across a diverse trade space; 3) generating digestible predictions of the possible future motions of an object; and 4) automating all these tasks to reduce operational costs and support autonomous decision-making. This talk will present selected recent contributions from my research group to address these challenges by developing new trajectory analysis, design, and prediction strategies for spacecraft operating in multi-body systems.</p><p><strong>Bio: </strong>Natasha Bosanac is an Assistant Professor in the Smead Department of Aerospace Engineering Sciences at the ֲý Boulder. She earned her S.B. in Aerospace Engineering from MIT in 2010. Then, she earned her M.S.A.A. and Ph.D. in Aeronautical and Astronautical Engineering from Purdue University in 2012 and 2016, respectively, with a focus on astrodynamics. Her research group works to advance trajectory design, analysis, and prediction strategies within multi-body systems through a combination of dynamical systems theory, machine learning, data mining, and path planning techniques.</p></div> </div> </div> </div> </div> <div>Our future in space involves miniaturized satellites for low-cost and rapid access to space, autonomously navigating spacecraft, on-orbit servicing for sustainability, in-space assembly of critical infrastructure, formations for multi-point measurements, and spacecraft visiting the...</div> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Tue, 17 Sep 2024 15:03:18 +0000 Jeff Zehnder 5793 at /aerospace Panel and Q&A - Charting Your Course: Navigating Careers in Aerospace - Sept. 12 /aerospace/2024/09/04/panel-and-qa-charting-your-course-navigating-careers-aerospace-sept-12 <span>Panel and Q&amp;A - Charting Your Course: Navigating Careers in Aerospace - Sept. 12</span> <span><span>Jeff Zehnder</span></span> <span><time datetime="2024-09-04T16:24:35-06:00" title="Wednesday, September 4, 2024 - 16:24">Wed, 09/04/2024 - 16:24</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/aerospace/sites/default/files/styles/focal_image_wide/public/article-thumbnail/cuaerospace-24767_2.jpg?h=165eb83c&amp;itok=ZAEDc71x" width="1200" height="600" alt="The Aerospace Building"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/aerospace/taxonomy/term/179"> Seminar </a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-content-media ucb-article-content-media-above"> <div> <div class="paragraph paragraph--type--media paragraph--view-mode--default"> </div> </div> </div> <div class="ucb-article-text d-flex align-items-center" itemprop="articleBody"> <div><div class="ucb-box ucb-box-title-left ucb-box-alignment-right ucb-box-style-fill ucb-box-theme-black"><div class="ucb-box-inner"><div class="ucb-box-title">Charting Your Course Panelists</div><div class="ucb-box-content"><div class="row ucb-column-container"><div class="col ucb-column"> <div class="imageMediaStyle small_square_image_style"> <img loading="lazy" src="/aerospace/sites/default/files/styles/small_square_image_style/public/2024-09/Darlene_Lim_2019.png?h=3b5177c5&amp;itok=hs_mquP_" width="375" height="375" alt="Darlene Lim"> </div> <p class="text-align-center lead">Darlene Lim</p><p>NASA Ames, VIPER Deputy Project Scientist, Science Operations &amp; Integration Lead</p></div><div class="col ucb-column"> <div class="imageMediaStyle small_square_image_style"> <img loading="lazy" src="/aerospace/sites/default/files/styles/small_square_image_style/public/2024-09/K%C3%B6nigsmann-1.jpg?h=d95601f8&amp;itok=GiI_qImW" width="375" height="375" alt="Hans Koenigsman"> </div> <p class="text-align-center lead">Hans&nbsp;Koenigsman</p><p>SpaceX, Vice President&nbsp;<br>of Flight Reliability&nbsp;<br>(Semi-Retired)</p></div></div></div></div></div><p class="text-align-center lead">Thursday, Sept. 12<br>5:30-6:30 p.m. • AERO 120</p><p>Smead Aerospace invites you to attend a special workshop on the broad range of career opportunities in aerospace engineering.</p><p>Join moderator <a href="/aerospace/torin-clark" data-entity-type="node" data-entity-uuid="c933dfd7-28f5-4259-bb96-0c8bb925e0e4" data-entity-substitution="canonical" rel="nofollow" title="Torin Clark">Prof. Torin Clark</a> and two aerospace professionals who will discuss exciting and innovative accomplishments in our field, share experiences from their careers, and provide advice and guidance to your own path.&nbsp;</p><p>This will be a one-hour panel with questions from the moderator and audience, followed by an open house that gives you the opportunity to interact with panelists one-on-one.</p></div> </div> </div> </div> </div> <div>Smead Aerospace invites you to attend a special workshop on the broad range of career opportunities in aerospace engineering...</div> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Wed, 04 Sep 2024 22:24:35 +0000 Jeff Zehnder 5786 at /aerospace Seminar - Breaking the Curse of Dimensionality in Decision-Making for Autonomous Systems - Sept. 6 /aerospace/2024/09/03/seminar-breaking-curse-dimensionality-decision-making-autonomous-systems-sept-6 <span>Seminar - Breaking the Curse of Dimensionality in Decision-Making for Autonomous Systems - Sept. 6</span> <span><span>Jeff Zehnder</span></span> <span><time datetime="2024-09-03T07:35:18-06:00" title="Tuesday, September 3, 2024 - 07:35">Tue, 09/03/2024 - 07:35</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/aerospace/sites/default/files/styles/focal_image_wide/public/2024-09/Aerospace_Faculty_Portraits_PC0199.JPG.JPG?h=8d2cc920&amp;itok=IaAYYKkh" width="1200" height="600" alt="Zach Sunberg"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/aerospace/taxonomy/term/179"> Seminar </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/aerospace/taxonomy/term/349" hreflang="en">Zachary Sunberg News</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> <div> <div class="align-right image_style-medium_750px_50_display_size_"> <div class="imageMediaStyle medium_750px_50_display_size_"> <img loading="lazy" src="/aerospace/sites/default/files/styles/medium_750px_50_display_size_/public/2024-08/Aerospace_Faculty_Portraits_PC0208.JPG.jpg?itok=0peklT0G" width="750" height="500" alt="Zach Sunberg"> </div> <span class="media-image-caption"> <p>Zach Sunberg</p> </span> </div> <p class="text-align-center lead">Zach Sunberg<br>Assistant Professor, Smead Aerospace<br>Friday, Sept. 6 | 10:40 a.m. | AERO 114</p><p><strong>Abstract:</strong> Autonomous cyberphysical systems hold the promise to positively transform many tasks, for example transportation, collecting scientific data in hazardous environments, and monitoring objects in space. &nbsp;Uncertainty is a critical factor in all of these domains. &nbsp;The partially observable Markov decision process (POMDP) and partially observable stochastic Game (POSG) provide mathematical formalisms for computing the best single-agent and multi-agent policies in the presence of uncertainty, however, these problems are notoriously computationally difficult to solve.&nbsp;</p><p>Recent work in the Autonomous Decision and Control Lab (ADCL) at CU Boulder has shown that one source of intractability, namely the curse of dimensionality in the state and observation spaces, is possible to overcome, both theoretically and practically. &nbsp;This presentation will give an overview of the ADCL's efforts to develop new theory and algorithms to solve POMDPs and POSGs and deploy the algorithms to solve real-world challenges.</p><p><strong>Bio:</strong> Zachary Sunberg is an Assistant Professor in the Ann and H.J. Smead Department of Aerospace Engineering Sciences and the ֲý Boulder.&nbsp;</p><p>His research focuses on partially observable Markov decision processes and game theory with applications to artificial intelligence and aerospace vehicle control.&nbsp;</p><p>Sunberg earned his PhD in Aeronautics and Astronautics at Stanford University, and his BS and MS degrees in Aerospace Engineering from Texas A&amp;M University.&nbsp;</p></div> </div> </div> </div> </div> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Tue, 03 Sep 2024 13:35:18 +0000 Jeff Zehnder 5783 at /aerospace Seminar: Entrepreneurship, Raising Capital and the Future of Investments in Aerospace and Tech - Apr. 30 /aerospace/2024/04/23/seminar-entrepreneurship-raising-capital-and-future-investments-aerospace-and-tech-apr-30 <span>Seminar: Entrepreneurship, Raising Capital and the Future of Investments in Aerospace and Tech - Apr. 30</span> <span><span>Anonymous (not verified)</span></span> <span><time datetime="2024-04-23T00:00:00-06:00" title="Tuesday, April 23, 2024 - 00:00">Tue, 04/23/2024 - 00:00</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/aerospace/sites/default/files/styles/focal_image_wide/public/article-thumbnail/2018_aerialfinalga_85.jpg?h=93aa5d3a&amp;itok=oz12-CHF" width="1200" height="600" alt="CU Boulder from the air."> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/aerospace/taxonomy/term/179"> Seminar </a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-content-media ucb-article-content-media-above"> <div> <div class="paragraph paragraph--type--media paragraph--view-mode--default"> <div> <div class="imageMediaStyle large_image_style"> <img loading="lazy" src="/aerospace/sites/default/files/styles/large_image_style/public/article-image/dan_carusos_headshot.jpg?itok=h4cGUGbq" width="1500" height="1501" alt="Dan Caruso"> </div> </div> </div> </div> </div> <div class="ucb-article-text d-flex align-items-center" itemprop="articleBody"> <div><p class="lead text-align-center">Dan Caruso<br> Managing Director, Caruso Ventures<br> Tuesday, April 30 | 4 P.M. | AERO 111</p> <p><strong><em>A talk with the Managing Director of Caruso Ventures on entrepreneurship, raising capital and the future of investments in aerospace and technology &nbsp;</em></strong></p> <p><em>Please join Mark Sirangelo as he welcomes Dan Caruso, the Managing Director of Caruso Ventures Colorado’s foremost investors and business leaders for a discussion of his career, how to raise capital for ventures and the future of investment in aerospace, space and technology.&nbsp; </em></p> <p>Dan Caruso is Managing Director of Caruso Ventures, a 3x decacorn entrepreneur and an avid supporter of entrepreneurship. In 2020, Dan and Cindy Caruso founded Caruso Ventures.&nbsp; Current investments, many based in Colorado, include aerospace and engineering related companies such as Exum Instruments, BillGO, Genalyte, Canopy Aerospace, Radia, Boom Supersonic, Language I/O, Voyager Space Holdings, Quantum Industries, Atom Computing, Firefly, Agile Space Industries and numerous others.</p> <p>Dan was the Founding Partner, Chairman and CEO of Zayo Group Holdings, Inc., where investors enjoyed a $8.5B equity exit on a $1.0B investment. Dan was a co-founding executive of Level 3 and joined Metropolitan Fiber Systems (MFS) as it began to scale. He currently serves as Chairman of the Board for Endeavor Colorado and is on the boards of Elevate Quantum and Colorado Thrives.</p> <p>In 2015, Dan and Cindy established The Caruso Foundation to Support Initiatives that Inspire Entrepreneurship, Innovation, and Inclusion. The Caruso Foundation supports a number of impactful organizations including the ֲý Boulder’s Startup Summer, Catalyze CU, and New Venture Challenge, Endeavor Colorado, Colorado Thrives and several others. Dan recently gave the commencement address for the ֲý Boulder MBA (2020).</p> <p>Dan is a recipient of several awards including the Chicago Booth Distinguished Alumni Award for Entrepreneurship, University of Illinois Alumni Award for Distinguished Service, Colorado Technology Association’s Bob Newman Lifetime Achievement Award, ֲý Leeds Corporate Partner Award (Zayo), and Colorado Governor’s Corporate Citizenship Medal.&nbsp; He holds an MBA from the University of Chicago and a B.S. in Mechanical Engineering from the University of Illinois.</p> <p><a href="/aerospace/sites/default/files/styles/large/public/article-image/sirangelo_3_jpg_1.jpg?itok=mr5nxIcg" rel="nofollow"> </a> <strong><a href="/aerospace/node/2496" rel="nofollow">Mark N. Sirangelo</a> </strong>created and hosts the CU Future Insight Seminar Series as CU’s Entrepreneur-Scholar in Residence. He is the recent Chairman of the U.S. Department of Defense’s Defense Innovation Board and the DoD’s Space Advisory Committee.&nbsp; Previously he was Special Assistant to the NASA Administrator helping to develop NASA’s return to the Moon.&nbsp; Mark was the founding executive and head of Sierra Nevada Corporation’s Space Systems and has served as the Chief Innovation Officer of Colorado.</p> <p>&nbsp;</p></div> </div> </div> </div> </div> <div>A talk with the Managing Director of Caruso Ventures on entrepreneurship, raising capital and the future of investments in aerospace and technology </div> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Tue, 23 Apr 2024 06:00:00 +0000 Anonymous 5706 at /aerospace Seminar: Controlling Instabilities in Flow with Phononic Subsurfaces - Apr. 26 /aerospace/2024/04/17/seminar-controlling-instabilities-flow-phononic-subsurfaces-apr-26 <span>Seminar: Controlling Instabilities in Flow with Phononic Subsurfaces - Apr. 26</span> <span><span>Anonymous (not verified)</span></span> <span><time datetime="2024-04-17T15:33:52-06:00" title="Wednesday, April 17, 2024 - 15:33">Wed, 04/17/2024 - 15:33</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/aerospace/sites/default/files/styles/focal_image_wide/public/article-thumbnail/2018_aerialfinalga_84.jpg?h=5ed4dc57&amp;itok=tjmL5AmW" width="1200" height="600" alt="CU Boulder from the air."> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/aerospace/taxonomy/term/179"> Seminar </a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-content-media ucb-article-content-media-above"> <div> <div class="paragraph paragraph--type--media paragraph--view-mode--default"> <div> <div class="imageMediaStyle large_image_style"> <img loading="lazy" src="/aerospace/sites/default/files/styles/large_image_style/public/article-image/image1_20.jpeg?itok=ZXFbNWqF" width="1500" height="2101" alt="Abigail Juhl"> </div> </div> </div> </div> </div> <div class="ucb-article-text d-flex align-items-center" itemprop="articleBody"> <div><p class="lead text-align-center">Abigail Juhl<br> Material Scientist, Materials and Manufacturing Directorate, AFRL<br> Friday, April 26 | 10:40 a.m. | AERO 120</p> <p><strong>Abstract: </strong>Delaying the onset of turbulent flow, even by a small percentage, can significantly improve the capability of Air Force assets by reducing fuel expenditures while increasing the range of operation.&nbsp;</p> <p>One method of transition from laminar to turbulent boundary layers is through the growth of Tollmien-Schlichting (T-S) waves. In 2015, a passive technique to reduce the magnitude of T-S waves was numerically demonstrated by <a href="/aerospace/node/404" rel="nofollow">Mahmoud Hussein</a> from the ֲý, Boulder.&nbsp; The method attached a phononic crystal (PnC) to the interior of an airfoil panel with a band gap designed to cause destructive interference of T-S waves. In contrast to existing methods for delaying turbulent transition, PnCs are fully passive (no electrical power or pneumatics required) and do not modify the external surface of the aircraft.&nbsp; In this talk, the evolution in research on phononic subsurfaces for flow control will be discussed.&nbsp;</p> <p>This includes efforts to reduce the size of phononic subsurfaces to fit into a wing, modeling the flow over a phononic subsurface using computational fluid dynamics simulations, model- informed design of phononic subsurfaces, determining the role of phase between the T-S wave and PnC response, and the challenges in experimentally achieving passive transition delay.</p> <p><strong>Bio:</strong> Dr. Abigail Juhl is a material scientist in the Materials and Manufacturing Directorate at Air Force Research Laboratory (AFRL).&nbsp; Dr. Juhl is currently leading a multidisciplinary team to understand, integrate, and apply acoustic metamaterials to Air Force problems. This includes development of materials for noise control, vibration mitigation, ultrasonic imaging, non-destructive evaluation, and control of flow instabilities.&nbsp;</p> <p>Abby received her Bachelors of Science in Materials Science and Engineering from North Carolina State University, and her Doctorate in Materials Science and Engineering from the University of Illinois Urbana-Champaign with a concentration in complex fluids and optical materials.&nbsp; She completed a National Research Council Postdoctoral Fellowship in the Optical Materials Branch at AFRL before starting in her current position.&nbsp;</p> <p>She served as the Assistant Chief Scientist of the Materials and Manufacturing Directorate as well as the Polymers and Responsive Materials Research Team Lead.&nbsp; She won the AFRL Early Career Award, DOD Lab Scientist of the Quarter Award, AF Civilian Achievement Award, Charles J. Cleary Scientific Award, and the ASME SMASIS Division Mechanics and Materials Systems Best Paper Award in 2022.</p></div> </div> </div> </div> </div> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Wed, 17 Apr 2024 21:33:52 +0000 Anonymous 5705 at /aerospace Seminar: Autonomous Miniaturized Distributed Space Systems - Apr. 12 /aerospace/2024/04/06/seminar-autonomous-miniaturized-distributed-space-systems-apr-12 <span>Seminar: Autonomous Miniaturized Distributed Space Systems - Apr. 12</span> <span><span>Anonymous (not verified)</span></span> <span><time datetime="2024-04-06T00:00:00-06:00" title="Saturday, April 6, 2024 - 00:00">Sat, 04/06/2024 - 00:00</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/aerospace/sites/default/files/styles/focal_image_wide/public/article-thumbnail/2018_aerialfinalga_83.jpg?h=d83e4924&amp;itok=OiMLdLM5" width="1200" height="600" alt="CU Boulder from the air."> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/aerospace/taxonomy/term/179"> Seminar </a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-content-media ucb-article-content-media-above"> <div> <div class="paragraph paragraph--type--media paragraph--view-mode--default"> <div> <div class="imageMediaStyle large_image_style"> <img loading="lazy" src="/aerospace/sites/default/files/styles/large_image_style/public/article-image/portrait_damico_stanford_2.jpg?itok=giijuqBn" width="1500" height="994" alt="Simone D'Amico"> </div> </div> </div> </div> </div> <div class="ucb-article-text d-flex align-items-center" itemprop="articleBody"> <div><p class="lead text-align-center">Simone D'Amico<br> Associate Professor of Aeronautics and Astronautics, Stanford<br> Friday, April 12 | 10:40 a.m. | AERO 120</p> <p><strong>Abstract: </strong>Two key trends are revolutionizing the way humans conduct spaceflight, namely, the miniaturization of satellites (e.g., micro- and nano-satellites) and the distribution of payload tasks among multiple coordinated units (e.g., formation-flying, on-orbit servicing, fractionation, swarms). The combination of these approaches promises breakthroughs in space science (e.g., imaging of earth-like planets, characterization of gravitational waves), remote sensing (e.g., synthetic aperture radar interferometry, aeronomy, gravimetry), and space exploration (e.g., lifetime extension, assembly of structures, space debris removal).</p> <p>Irrespective of the specific application, future miniature distributed space missions require a high level of autonomy to maintain and reconfigure the relative motion of the participating vehicles in safety and within the prescribed accuracy and range of operations. Especially on small spacecraft, these requirements are hard to meet due to the limited resources, and the chief goal of current research and development is to pave the way for the autonomous Guidance, Navigation, &amp; Control (GNC) of multiple "self-driving nanosatellites”. This presentation addresses the new miniature distributed space missions under development at the Stanford's Space Rendezvous laboratory and the related advances in multi-satellite GNC.</p> <p><strong>Bio:</strong> Simone D’Amico is Associate Professor of Aeronautics and Astronautics (AA), W.M. Keck Faculty Scholar in the School of Engineering, and Professor of Geophysics (by Courtesy). He is the Founding Director of the Stanford’s Space Rendezvous Laboratory and Director of the AA Undergraduate Program. He received the B.S. and M.S. degrees from Politecnico di Milano (2003) and the Ph.D. degree from Delft University of Technology (2010).</p> <p>Before Stanford, Dr. D’Amico was research scientist and team leader at the German Aerospace Center (DLR) for 11 years. There he gave key contributions to formation-flying and proximity operations missions such as GRACE, PRISMA, TanDEM-X, BIROS and PROBA-3.</p> <p>His research aims at enabling future miniature distributed space systems for unprecedented remote sensing, space and planetary science, exploration and spaceflight sustainability. To this end he performs fundamental and applied research at the intersection of advanced astrodynamics, spacecraft Guidance, Navigation and Control (GNC), autonomy, machine learning and space system engineering.</p> <p>Dr. D’Amico is institutional PI of three autonomous satellite swarm missions funded by NASA and NSF, namely STARLING, VISORS, and SWARM-EX. He is Fellow of AAS, Associate Fellow of AIAA, Associate Editor of AIAA JGCD, Technical Advisor of NASA and three space startups (Capella, Infinite Orbits, Reflect Orbital).</p> <p>He was the recipient of several awards, including Best Paper Awards at IAF (2022), IEEE (2021), AIAA (2021), AAS (2019) conferences, the Leonardo 500 Award by the Leonardo da Vinci Society/ISSNAF (2019), FAI/NAA’s Group Diploma of Honor (2018), DLR’s Sabbatical/Forschungssemester (2012) and Wissenschaft Preis (2006), and NASA’s Group Achievement Award for the GRACE mission (2004).</p></div> </div> </div> </div> </div> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Sat, 06 Apr 2024 06:00:00 +0000 Anonymous 5699 at /aerospace Seminar - Harmonics dispersion relation: A new fundamental theory of strongly nonlinear waves - Apr. 5 /aerospace/2024/04/02/seminar-harmonics-dispersion-relation-new-fundamental-theory-strongly-nonlinear-waves-apr <span>Seminar - Harmonics dispersion relation: A new fundamental theory of strongly nonlinear waves - Apr. 5</span> <span><span>Anonymous (not verified)</span></span> <span><time datetime="2024-04-02T09:29:47-06:00" title="Tuesday, April 2, 2024 - 09:29">Tue, 04/02/2024 - 09:29</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/aerospace/sites/default/files/styles/focal_image_wide/public/article-thumbnail/aerospace_faculty_portraits_pc0158.jpg.jpg?h=6859a1a6&amp;itok=8vRkseuH" width="1200" height="600" alt="Mahmoud Hussein"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/aerospace/taxonomy/term/179"> Seminar </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/aerospace/taxonomy/term/197" hreflang="en">Mahmoud Hussein News</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-content-media ucb-article-content-media-above"> <div> <div class="paragraph paragraph--type--media paragraph--view-mode--default"> <div> <div class="imageMediaStyle large_image_style"> <img loading="lazy" src="/aerospace/sites/default/files/styles/large_image_style/public/article-image/aerospace_faculty_portraits_pc0158.jpg.jpg?itok=OlsXb-bE" width="1500" height="1125" alt="Mahmoud Hussein"> </div> </div> </div> </div> </div> <div class="ucb-article-text d-flex align-items-center" itemprop="articleBody"> <div><p class="lead text-align-center">Mahmoud I. Hussein<br> Alvah and Harriet Hovlid Professor, Ann &amp; H.J. Smead Department of Aerospace Engineering Sciences, ֲý Boulder<br> Friday, April 5 | 10:40 a.m. | AERO 120</p> <p><strong>Abstract: </strong>Wave motion lies at the heart of many disciplines in the physical sciences and engineering. For example, problems and applications involving light, sound, heat, or fluid flow are all likely to involve wave dynamics at some level. While the theory of linear waves is fairly established, nonlinear wave motion remains a complex, often mysterious, object—particularly when the nonlinearity is strong.</p> <p>For example, an unbalanced nonlinear wave distorts acutely as it travels and appears to ultimately fully lose its original shape, and in many instances the final outcome is onset of a form of instability. Inherent to this distortion is an intricate mechanism of harmonic generation manifesting in intensive time-varying exchange of energy between the harmonics that matches the wave’s ongoing nonlinear evolution in space and time.</p> <p>In this work, a general theory is presented for the dispersion of these generated harmonics as they emerge and develop in a traveling nonlinear wave. The harmonics dispersion relation−derived by the theory−provides direct and exact analytical prediction of the collective harmonics spectrum in the frequency-wavenumber domain, and does so without prior knowledge of the spatial-temporal solution.</p> <p>Despite its time-independence, the new relation is shown to be applicable at any temporal state of evolution of the nonlinear wave as long as the wave is balanced or has not yet reached its breaking point. The theory is applied to nonlinear elastic waves in a homogeneous rod and an extension is demonstrated to rods with a periodic array of property modulation (phononic crystal) or intrinsic resonators (elastic metamaterial). Finally, the theory is shown to provide a rigorous foundation for the analytical synthesis of solitons.</p> <p><strong>Bio: </strong>Mahmoud I. Hussein is the Alvah and Harriet Hovlid Professor at the Smead Department of Aerospace Engineering Sciences at the ֲý Boulder. He holds a courtesy faculty appointment in the Department of Physics and has formally served as the Engineering Faculty Director of the Pre-Engineering Program and the Program of Exploratory Studies. He received a BS degree from the American University in Cairo (1994) and MS degrees from Imperial College London (1995) and the University of Michigan‒Ann Arbor (1999, 2002). In 2004, he received a PhD degree from the University of Michigan‒Ann Arbor, after which he spent two years at the University of Cambridge as a postdoctoral research associate.</p> <p>Dr. Hussein’s research focuses on the dynamics of materials and structures, especially phononic crystals and metamaterials, at both the continuum and atomistic scales. He received a DARPA Young Faculty Award in 2011, an NSF CAREER award in 2013, and in 2017 was honored with a Provost’s Faculty Achievement Award for Tenured Faculty at CU Boulder. He was awarded as PI two multi-million dollar grants, both on concepts he discovered—<em>nanophononic metamaterials</em> (NPMs, <em>Phys. Rev. Lett</em>., 2014; ARPA-E 2019-2023) and <em>phononic subsurfaces</em> (PSubs, <em>Proc. R. Soc. A</em>, 2015; ONR MURI 2024-2029).</p> <p>He has co-edited a book titled <em>Dynamics of Lattice Materials</em> published by Wiley. He is a Fellow of ASME and has served as an associate editor for the <em>ASME Journal of Vibration and Acoustics</em>. In addition, he is the founding vice president of the International Phononics Society and has co-established the biennial Phononics 20xx conference series which has helped create a new multidisciplinary research community and is widely viewed as the world’s premier event in the emerging field of phononics.</p></div> </div> </div> </div> </div> <div>Wave motion lies at the heart of many disciplines in the physical sciences and engineering. For example, problems and applications involving light, sound, heat, or fluid flow are all likely to involve wave dynamics at some level. While the theory of linear waves is fairly established, nonlinear wave motion remains a...</div> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Tue, 02 Apr 2024 15:29:47 +0000 Anonymous 5698 at /aerospace Seminar: Multi-spectral Remote Sensing and Retrieval of Snow Algae and Light Absorbing Particles in Snow with Commercial SmallSat data, UAVs, and Robotic Sampling - Apr. 1 /aerospace/2024/03/25/seminar-multi-spectral-remote-sensing-and-retrieval-snow-algae-and-light-absorbing <span>Seminar: Multi-spectral Remote Sensing and Retrieval of Snow Algae and Light Absorbing Particles in Snow with Commercial SmallSat data, UAVs, and Robotic Sampling - Apr. 1</span> <span><span>Anonymous (not verified)</span></span> <span><time datetime="2024-03-25T00:00:00-06:00" title="Monday, March 25, 2024 - 00:00">Mon, 03/25/2024 - 00:00</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/aerospace/sites/default/files/styles/focal_image_wide/public/article-thumbnail/2018_aerialfinalga_82.jpg?h=ce344764&amp;itok=qKNoDZQp" width="1200" height="600" alt="CU Boulder from the air."> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/aerospace/taxonomy/term/179"> Seminar </a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-content-media ucb-article-content-media-above"> <div> <div class="paragraph paragraph--type--media paragraph--view-mode--default"> <div> <div class="imageMediaStyle large_image_style"> <img loading="lazy" src="/aerospace/sites/default/files/styles/large_image_style/public/article-image/alia_khan.jpg?itok=sTwKufwU" width="1500" height="2266" alt="Alia Khan "> </div> </div> </div> </div> </div> <div class="ucb-article-text d-flex align-items-center" itemprop="articleBody"> <div><p class="lead text-align-center">Alia Khan<br> Associate Professor, Environmental Sciences, Western Washington University<br> Monday, April 1 | 9:30 a.m. | AERO 111</p> <p><strong>Abstract:</strong> The global cryosphere – the frozen water domain – is experiencing unprecedented change. To match this rapid pace, innovative technological approaches and interdisciplinary engineering solutions are needed across disciplines to increase the spatial, temporal, and spectral resolution at which data is retrieved, and processed, from the Earth’s surface. With support from active NASA and NSF awards, my research team is utilizing high resolution multi-spectral data collected by UAVs and commercial SmallSats, like SkySat, which has 0.5 m ground resolution, to remotely detect and map the spatiotemporal distribution of snow algae and other light absorbing particles. The presence of snow algae blooms and light absorbing particles, like black carbon from wildfires, enhance the absorption of solar radiation by snow and ice surfaces, creating a measurable increase in radiative forcing. This can have immediate local and long-term regional impacts on albedo, snow melt rates and ecosystems that depend on meltwater downstream. There is strong evidence that these effects may be intensifying due to a warming climate.</p> <p>The polar regions are warming 2 to 3 times faster than the global average. In the Arctic, deposition of black carbon on the Greenland Ice Sheet is increasing due to high-latitude wildfires. In the Antarctic, rapid and persistent warming is likely resulting in an expansion of snow-algae blooms, increased snowmelt, and an anticipated expansion of ice-free lands. In this seminar I will focus on current and future approaches for remotely mapping and detecting the spatial and temporal distributions of snow algae, as well as two Colorado Space Grant Consortium (COSGC) projects I have advised that were comprised of interdisciplinary teams of CU engineering students. The most recent team has designed and built a UAV-mounted robotic snow coring payload that has successfully retrieved snow samples from the flanks of a glaciated mountain in the North Cascades.</p> <p><strong>Bio:</strong> Dr. Alia L. Khan is an Associate Professor in the Department of Environmental Sciences at Western Washington University (WWU). Her research combines data from high resolution multi-spectral imagery collected by UAVs and commercial/public satellites with ground-based biogeochemical analysis of snow, ice, and spectral albedo, to elucidate the impacts of climate change on melt across the global cryosphere. She is currently managing six active research grants funded through NASA and NSF, including a CAREER Award. Alia completed her PhD in August 2016 in Civil and Environmental Engineering at the ֲý – Boulder and was a Postdoctoral Research Associate at the National Snow and Ice Data Center, before moving to WWU in Bellingham, WA in early 2019.&nbsp;</p></div> </div> </div> </div> </div> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Mon, 25 Mar 2024 06:00:00 +0000 Anonymous 5669 at /aerospace