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Abstract. A fast adaptive algorithm for the solution of elliptic par-
tial differential equations is presented. It is applied here to the Pois-
son equation with periodic boundary conditions. The extension to
more complicated equations and boundary conditions is outlined.

The purpose is to develop algorithms requiring a number of op-
erations proportional to the number of significant coefficients in the
representation of the r.h.s. of the equation. This number is related
to the specified accuracy, but independent of the resolution. The
wavelet decomposition and the conjugate gradient iteration serve as
the basic elements of the present approach.

The main difficulty in solving such equations stems from the
inherently large condition number of the matrix representing the lin-
ear system that result from the discretization. However it is known
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velop a framework for solving problems with general boundary conditions.
Let us consider the partial differential equation

Lu=f zeDcRY, (1.1)

with the boundary condition

Bulsp = 9, (1.2)
where L is an elliptic operator,
Lu=— 3 (ay() Us,),, + b(z) U, (1.3)
i,j=1,..,d

and B is the boundary operator,
Ju

We assume that the boundary 8D is “complicated.” As a practical matter

otk | I 4 a o,

valid in higher dimensions as well.

We adopt a classical approach to this problem which, until now, was
not practical from the numerical point of view. We consider the following
steps for solving the problem in (1.1) and (1.2):

1. We generate a function fe,;, a smooth extension of f outside the

domain D, such that feys is compactly supported in a rectangular
1T " T T D ~—~1d 1 ¢ r Ty
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where V; is a subspace of an MRA spanned by translations of the scaling
function,

o -lm) = 2792 (97 my — k) (2 Ty — ko). (27 Ta — ki), (2.3)

4
i
scaling function of MRA of L2(R).
Let us define the subspaces W as orthogonal complements of V; in
Vj—l)
Vj_l = Vj > Wj, (24)
and represent the space L2(RY) as a direct sum
L*RY) =V.PW;, (2.5)
j<n
7%5—7 Lol 1 3 3 — s 5
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Instead of estimating M), , directly, we may use an iterative approach.
For example, solving directly on M. £ h.s Produces a solution 4 with accuracy
€ > €. Applvine the Labplacian ta 7. we oenerate f Fetimati
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In [5] the s-form is used to solve the two-point boundary-value problem.
Alternatively, we may use the ns-form. Some care is required at this point
since the preconditioned ns-form is dense unlike the s-form, which remains
sparse. Thus, in the process of solving the linear system, it is necessary to
apply the preconditioner and the ns-form sequentially in order to maintain
sparsity. The ns-form is preferable in multiple dimensions since, for exam-
ple, differential operators require O(1) elements for representation on all
scales (see e.g. [4]).

We develop a constrained (see below) preconditioned CG algorithm for

onlirina (1 BY in an andnvbiven snowanoe Doal ob - - £o.o. ... 3 a1 r

may be used for this purpose but it appears that using the ns-form is
more efficient, especially if compactly supported wavelets are used and
high accuracy is required.

Let nis congider (0.5) in the e yglefususten of coordinatas

Lypsuw = fu, (3.2)

where f,, and u,, are representations of f and u in the wavelet system of
coordinates. This equation should be understood to include the rules for
applying the ns-form (see [6]).

Let us rewrite (3.2) using the preconditioner P as

P Lns Pv= Pfun (33)
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§4 Preconditioner for the operator —A + Const

An “efficient” preconditioner is an essential element in the present ap-
proach. In a more restricted sense, “efficient” means insensitive to the size
of the problem.

Let us demonstrate how to construct a diagonal preconditioner for the
sum of operators —A + Const in the wavelet bases. We observe that if
A and B are diagonal operators with diagonal entries a; and b;, then the

. diagonal operator with entries 1/(a; + b;) (provided a; +b; # 0) is an ideal
preconditioner.

In our case, the operator —A is not diagonal but we know a good
diagonal preconditioner for it in wavelet bases (3.4). Let us use this pre-
conditioner instead of —A for the purpose of constructing a preconditioner
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Figure 4. Compare the results after 5 and 7 iterations for w = 0.8; 1024 points,
Daubechies 20, no skip.
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Figure 5. Compare the results after 7 and 9 iterations for w = 0.8, 1024 points,
Daubechies 20, no skip.
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# scales
to skip | # iterations I oo I Ke
0 36 10713 10714
1 36 | 0.45x107% | 0.32 x 109
2 34 | 0.96 x 1078 | 0.52 x 108
3 32 (0.17x%x107% | 0.83 x 10-7
4 27 1 0.30 x 107% | 0.13 x 105
5 17 | 048 x 104 | 0.21 x 104
6 91 0.80x1073 | 0.34 x 103

rnll‘_q el =m0 —— 18

§6 Further numerical experiments

In the second set of one-dimensional experiments we verify that using the |
“constrained CG” method we can maintain the sparsity of the conjugate t
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