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Adaptive Solution of Partial Differential
Equations in Multiwavelet Bases

B. Alpert,∗,1 G. Beylkin,†,2 D. Gines,† and L. Vozovoi‡,3,4,55(5)48 537.7872 Tm

�

We construct multiresolution representations of derivative and exponential opera-tors with linear boundary conditions in multiwavelet bases and use them to developa simple, adaptive scheme for the solution of nonlinear, time-dependent partial dif-ferential equations. The emphasis on hierarchical representations of functions onintervals helps to address issues of both high-order approximation and efficient ap-plication of integral operators, and the lack of regularity of multiwavelets does notpreclude their use in representing differential operators. Comparisons with finite dif-ference, finite element, and spectral element methods are presented, as are numericalexamples with the heat equation and Burgers’ equation.c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

In this paper we construct representations of operators in bases of multiwavelets, with
the goal of developing adaptive solvers for both linear and nonlinear partial differential
equations, and we demonstrate success with a simple solver. We use multiwavelet bases
constructed in [2] following [3, 5]. These bases were also considered in [15], although not
for numerical purposes. Multiwavelet bases retain some properties of wavelet bases, such as
vanishing moments, orthogonality, and compact support. The basis functions do not overlap
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on a given scale and are organized in small groups of several functions (thus, multiwavelets)
sharing the same support. On the other hand, the basis functions are discontinuous, similar
to the Haar basis and in contrast to wavelets with regularity. As was shown in [3] (dis-
crete version of multiwavelets) and [2], multiwavelet bases can be successfully used for
representing integral operators. A wide class of integrodifferential operators has effectively
sparse representations in these bases, due to vanishing moments of the basis functions. An
effectively sparse matrix representation is one that differs from a sparse matrix by a matrix
with a small norm.

However, this early success with integral operators did not immediately lead to the suc-
cessful solution of partial differential equations. The requirements for solving partial dif-
ferential equations, especially adaptively, differ somewhat from those for integral equations
and extend beyond the property of vanishing moments.

In this paper we demonstrate that the multiwavelet bases are well suited for high-order
adaptive solvers of partial differential equations, and we argue that they present a better
choice than other wavelet bases. The representation of differential operators in these bases
may be viewed as a multiresolution generalization of finite difference schemes, discontin-
uous finite element schemes, introduced in [11] (see also [10] and references therein), and
finite spectral elements (see, for example, [20, 21]). We expand on these points later in the
paper.

There are two main reasons for using wavelet bases as a tool for computing solutions
of partial differential equations (PDEs). First, the fact that advection–diffusion equations
(for example, the Navier–
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An extension of such representations using bases on an interval [12] may also be in-
terpreted as a finite difference scheme on the finest scale with a ”corrected” stencil near
the boundary. The problem of accommodating boundary conditions in such cases is very
similar to that for the usual finite difference scheme, in that there is a loss of quality of ap-
proximation near the boundary. This is due either to the loss of the order of approximation
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the pressure term from (2.4)) is well known and appears in a variety of forms in the literature.
The integral operator (2.8) can be obtained using the Riesz transform following a derivation
presented, for example, in [22].

Equation (2.9) shows that the Navier–Stokes equations are integrodifferential equations.
Yet, using the singular integral operator (2.8) for numerical purposes has largely been
avoided because of a difficulty in obtaining an accurate procedure for its application via
standard methods. However, in a wavelet basis with a sufficient number of vanishing mo-
ments (for a given accuracy), the projector P is nearly local on wavelets and, thus, has
a sparse representation. This approximate locality follows directly from the vanishing-
moments property. Precise statements about such operators and examples can be found in
[6] (see also [4, 5]).

This observation provides us with a reason to require that the vanishing-moment property
be satisfied for the basis functions. This is exactly the same consideration that one needs to
use in the theory of the vortex method [9], except that we consider no further approximations
of the Navier–Stokes equations.

A second reason for using wavelet bases is found if we consider numerical methods for
time evolution of (2.1). Using the semigroup approach (see for example, [17, 19, 22]) we
rewrite the PDE (2.1) as a nonlinear integral equation in time,

u(x, t) = e(t−t0)Lu0(x) +
∫ t

t0

e(t−� )LN (u(x, � )) d�, (2.10)

and consider a class of exact linear part (ELP) time-evolution schemes [7, 8]. A distinctive
feature of these schemes is the exact evaluation of the contribution of the linear part. When
the nonlinear part is zero, the scheme reduces to the evaluation of the exponential function
of the operator (or matrix) L representing the linear part.

The stability of traditional time-discretization schemes for advection–diffusion equations
is controlled by the linear term, and these equations typically require an implicit marching
scheme to avoid an impractically small time step. As is show in [8], with an explicit ELP
scheme it is possible to achieve the stability usually associated with implicit predictor–
corrector schemes. Even if an implicit ELP scheme is used, as in [7], an approximation
is used only for the nonlinear term. This changes the behavior of the corrector step of
implicit schemes. The corrector step iterations of the usual implicit schemes for advection–
diffusion equations involve either both linear and nonlinear terms or only the linear term [18].
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two and three dimensions, additional issues of efficiency (which we will consider separately)
have to be addressed to make such schemes practical. Numerical schemes of ELP type,
however, provide significant advantages and are available only if the resulting matrices are
sparse in the system of coordinates chosen for computations. Again the basic reason for
sparsity (for a given but arbitrary precision) is the vanishing-moment property.

The next step in our assessment of the requirements for the basis is to consider the
boundary conditions. In (2.1) and (2.10) we incorporate the boundary conditions into the
operatorL. For example, u =L−1v means that u solvesLu = v with the boundary conditions
Bu = 0. Similarly, u(x, t) = eu(x� L � u(x, ) u(x
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3.1.3. Multiwavelets. We introduce piecewise polynomial functions �0, . . . , �k−1 to
be an orthonormal basis for Wk

0,

∫ 1

0
� i (x)� j (x) dx = �i j . (3.10)

Since Wk
0 ⊥ Vk

0, the first k moments of �0, . . . , �k−1 vanish:

∫ 1

0
� j (x)xi dx = 0, i, j = 0, 1, . . . , k − 1. (3.11)

The space Wk
n is spanned by 2nk functions obtained from �0, . . . , �k−1 by dilation and

translation,

� n
jl(x) = 2n/2� j (2

n x − l), j = 0, . . . , k − 1, l = 0, . . . , 2n − 1, (3.12)

and supp (4sTD
07i F3 1 Tf
6�j l (
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TABLE I

Interpolating Basis Functions

k = 1
R1(x) = 1/

√
2

k = 2
R1(x) = (1 − √

3x)/2
R2(x) = (1 + √

3x)/2

k = 3
R1(x) = (−√

3x + √
5x2)/2

R2(x) = (−3 + 5x2)/(2
√

2)
R3(x) = (

√
3x + √

5x2)/2

have the following properties:

1. The functions R0, . . . , Rk−1 form an orthonormal basis on [−1, 1] with respect to the
inner product 〈 f, g〉[−1,1] = ∫ 1

−1 f (x)g(x) dx.
2. For j = 0, . . . , k − 1, R j is a linear combination of Legendre polynomials given by

R j (x) = √
w j

∑k−1
i=0 (i + 1

2 )Pi (x j )Pi (x).
3. Any polynomial f of degree less than k can be represented by the expansion f (x) =∑k−1
j=0 d j R j (x), where the coefficients are given by d j = √

w j f (x j ), j = 0, . . . , k − 1.

The proof of Proposition 3.1 is straightforward and we omit it here. Examples of inter-
polating basis functions for k = 1, 2, and 3 are given in Table I.

Remark 3.1.
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For Daubechies’ wavelets, the filter coefficients are used to construct the scaling function
� and the wavelet � , whereas, in our case, functions � and � are known, and we use them
to construct the filter coefficients.

The relations (3.2) and (3.3) between the subspaces may be expressed by the two-scale
difference equations,

�i (x) =
√

2
k−1∑
j=0

(
h(0)

i j � j (2x) − h(1)
i j � j (2x − 1)

)
, i = 0, . . . , k − 1, (3.18a)

� i (x) =
√

2
k−1∑
j=0

(
g(0)

i j � j (2x) + g(1)
i j � j (2x − 1)

)
, i = 0, . . . , k − 1, (3.18b)

where the coefficients g(0)
i j , g(1)

i j depend on the choice of the order k. The functions
√

2�0

(2x), . . . ,
√

2�k−1(2x) in (3.18) are orthonormal on the interval [0, 1
2 ] whereas

√
2�0

(2x − 1), . . . ,
√

2�k−1(2x − 1) are orthonormal on the interval [ 1
2 , 1]. The matrices of co-

efficients

H (0) = {
h(0)

i j

}
, H (1) = {

h(1)
i j

}
, G(0) = {

g(0)
i j

}
, G(1) = {

g(1)
i j

}
(3.19)

are analogs of the quadrature mirror filters (see, for example, [14]). The two-scale
equations (3.18) lead us to a multiresolution decomposition. We now derive the necessary
relations for multiresolution reconstruction.

By construction, we have 〈�i ,� j 〉 = �i j , 〈� i , � j i j
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�i (2x − 1) = 1√
2

k−1∑
j=0

(
h(1)

j i � j (x) + g(1)
j i � j (x)

)
. (3.23b)

Relations (3.18) and (3.23) yield algorithms for transition between different scales of the
multiresolution analysis, which we briefly describe in Section 3.3.

3.2.1. QMF coefficients. We explicitly compute the quadrature mirror filter (QMF) co-
efficients as matrices H (0), H (1), G(0), and G(1). We compute the matrix H (1) by multiplying
both sides of the two-scale difference equation (3.18a) by

√
2� j (2x). Due to orthogonality,

we obtain

h(0)
(i j) =

√
2
∫ 1/2

0
�i (x)� j (2x) dx . (3.24)

Applying Gauss–Legendre quadrature, we get

h(0)
i j = 1√

2

k−1∑
m=0

wm �i

(
xm

2

)
� j (xm). (3.25a)

We proceed in the same manner to obtain from (3.18) the equations

h(1)
i j = 1√

2

k−1∑
m=0

wm �i

(
xm + 1

2

)
� j (xm2

)
�
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TABLE IV

Coefficient Matrices H(0) for Interpolating Scaling

Functions for k =1, 2, and 3

[
1√
2

]
1

4
√

2

[
3 + √

3 1 + √
3

1 − √
3 3 − √

3

]

1

72
√

2


 42 + 12

√
15 12

√
6 + 6

√
10 6

−15
√

6 + 6
√

10 42 15
√

6 + 6
√

10

6 −12
√

6 + 6
√

10 42 − 12
√

15




Vk
n , the function f (x) is represented by the Legendre expansion

f (x) =
2n−1∑
l=0

k−1∑
j=0

sn
jl�

n
jl(x), (3.30)

where the coefficients sn
jl are computed as

sn
jl =

∫ 2−n (l+1)

2−nl
f (x)�n

jl(x) dx . (3.31)

The decomposition of f (x) into the multiwavelet basis is given byx� 0

k 1� k1�(3.3�
/F24 1 Tf
6.9733310 0 6.9738 304738 0 0 6.9738 323.2329 428(gij
/ 365.112TD
(1))Tj
-3.5937 -2813 0 0 4.9813 281.2321.22 363T/JTD
(�)Tj)Tj
6.9738 0 0 6.9738 219.8575 469 Tf6F22 65.112TD
(1e)0(n)-250(b)0(y)]TJ
/F24 1 Tf
-1.8492F22 15542 15542 155429n

0

k 1�lTD
(l)Tj
/F61 Tf
0.7.349 0 TD
(�)Tj
/F9.9621
0.38 1 T76.9626m5429x0k 1

j



162 ALPERT ET AL.

The relations between the coefficients on two consecutive levels m and m + 1 are
(decomposition step)

sm
il =

k−1∑
j=0

(
h(0)

i j sm+1
j,2l + h(1)

i j sm+1
j,2l+1

)
, (3.34a)

dm
il =

k−1∑
j=0

(
g(0)

i j sm+1
j,2l + g(1)

i j sm+1
j,2l+1

)
. (3.34b)

These relations follow from (3.18), (3.31), and (3.33). Thus, starting with 2nk values sn
il , we

apply repeatedly the decomposition procedure (3.34) to compute the coefficients on coarser
levels, m = n − 1, n − 2, . . . , 0.

For multiwavelet reconstruction, we compute the coefficients sn
jl from the multiwavelet

coefficients s0
j0, dm

jl , m = 0, . . . , n using recursively the following relations (reconstruction
step),

sm+1
i,2l =

k−1∑
j=0

(
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subintervals and examine the error on each subinterval. Due to orthonormality, the error on
some subinterval l is ‖ f n+1 − f n

l ‖2 = ‖dn
l ‖2. It is easy to verify that in order to maintain

the global condition

‖ f n+1 − f n‖2 ≤ 	‖ f n+1‖2, (3.38)

we may truncate the (n + 1)-scale representation when

∥∥dn
l

∥∥
2 ≤ 2−n/2‖ f n+1‖2	. (3.39)

Using (3.39) as a truncation threshold, we set to zero all difference coefficients which
satisfy that constraint. In so doing, we may adaptively reduce the number of coefficients in
the representation, while maintaining the specified accuracy 	.

3.3.3. Pointwise multiplication of functions. We now briefly describe the procedure
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Also, since d
dx is a local operator, only interactions between neighboring intervals are

involved; that is, rl
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where coefficients M(p)
jl are the moments of functions �n

jl ,

M(p)
jl =

∫ 1

0
�n

jl(x)x p dx, j = 0, . . . , k − 1. (4.14)

Then the matrices rl are required to satisfy

p M(p−1)
i,0 = 2n

1∑
l = −1

k−1∑
j=0

M(p)
jl [rl]i j , p = 0, . . . , k − 1. (4.15)

It is not difficult to verify that the complete system (4.12), (4.15) contains 3k2 − 2 linearly
independent equations for 3k2 unknowns (some equations are duplicated). As we will
see, these two extra degrees of freedom account for the interaction between neighboring
intervals. By setting a = [r−1]00 and b = − [r1]00
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The corresponding matrices �n
lm, �n

lm, 
 n
lm on the nth level can be computed by rescaling,

�n
lm = 2n�l−m, �n

lm = 2n�l−m, 
 n
lm = 2n
l−m . (4.19)

Thus, the nonstandard form of the operator d
dx in the multiwavelet basis is completely

determined by the matrices rl . We have obtained a parametrized family of weak derivative
operators.

4.2. Computation of the Transition Matrix (Approach II)

In this section we use a traditional approach in defining the weak derivative. This approach
amounts to the integration by parts to compute the elements of the transition matrix of the
operator d

dx (for both the Legendre and the interpolating bases). This approach permits us to
establish the meaning of the free parameters a and b in (4.18). We show that for a particular
choice of a and b, the order of approximation is maximized. Let us consider (4.2) for the
derivative operator, where f ∈ C r−

−�
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and similarly on the boundary x̄l . When approximating f (x̄l+1) by finite sums, an error is
incurred so that from the left,

f (x̄l+1) = 2n/2
k−1∑
j=0

sn
jl � j (1) + 	(1)

kn , (4.25a)

and from the right (l �= 2n − 1),

f (x̄l+1) = 2n/2
k−1∑
j=0

sn
j,l+1 � j (0) + 	(0)

kn . (4.25b)

In the Appendix we derive estimates for the truncation errors, where we separate the leading-
order term,

	(1)
kn = 2−nk�k + O

(
2−n(k+1)

)
, (4.26a)

	(0)
kn = 2−nk(−1)k�k + O

(
2−n(k+1)

)
, (4.26b)

where

�k = k!

(2k)!
f (k)(x̄l+1). (4.26c)

To approximate the interior boundary values (4.25), we use weighted contributions from
both sides of the boundary as

f (x̄l+1) = 2n/2
k−1∑
j=0

[
(1 − a) sn

jl� j (1) + a sn
j,l+1� j (0)

] + (1 − a)	(1)
kn + a	(0)

kn , (4.27)

where 0 ≤ a ≤ 1 is a parameter. Similarly, on the boundary x = x̄l we have

f (x̄l) = 2n/2
k−1∑
j=0

[
(1 − b) sn

jl� j (0) + b sn
j,l−1� j (1)

] + (1 − b)	(0)
kn + b	(1)

kn , (4.28)

where 0 ≤ b ≤ 1 is a parameter. We show in Section 4.2.1 that parameters a and b are
identical to those introduced in (4.16). To approximate the external boundary values, we
may set a = 0 in (4.27) (for the right boundary), and b = 0 in (4.28) (for the left boundary).
Alternatively, in the case of Dirichlet boundary conditions, the exact values of f (x) may be
used at x = 0 and 1 instead. We discuss this further in Section 4.3.

Substituting (4.27) and (4.28) into (4.22), we obtain

s̃n
il = 2n

k−1∑
j=0

{
[(1 − a)�i (1)� j (1) − (1 − b)�i (0)� j (0) − Ki j ]s

n
jl

+ a�i (1)� j (0)sn
j,l+1 − b�i (0)� j (1)sn

j,l−1

} + 	kn, (4.29)

where

	kn = 2−n(k−1/2)�k[�i (1) ((1 − a) + a(−1)k
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We can estimate the error of the resulting derivative function f ′(x) by noting that the coeffi-
cients in (4.29) (and the error term in (4.30)) are rescaled on the subspace Vk

n by an additional
factor of 2n/2 (see (3.6)). Since the subinterval length is h = 2−n , the approximation error
is O(hk−1).

This estimate demonstrates the high order of approximation of the method. It is valid
up to and including the boundaries, since boundary conditions are set by selecting specific
values for parameters a and b in [0, 1] (see Section 4.3), and, thus, does not affect the order
of approximation.

Remark 4.1. We note, however, that if k is odd, the leading-order term in (4.30) can
be eliminated by setting a = b = 1

2 , which gives O(hk). The leading-order term is also
eliminated for k = 1 (Haar) when a = 1 and b = 0, or vice versa.

Comparing (4.29) with (4.8), we identify [r1]i j , [r0]i j , and [r−1]i j as

[r1]i j = −b�i (0)� j (1), (4.31a)

[r0]i j = (1 − a)�i (1)� j (1) − (1 − b)�i (0)� j (0) − Ki j , (4.31b)

[r−1]i j = a �i (1)� j (0). (4.31c)

Clearly, the matrices r−1 and r1 have rank 1, as we mentioned before.

4.2.1. Transition matrix in the Legendre basis. We provide explicit expressions for the
parameters in (4.31) for the Legendre basis. Using a relation for the Legendre polynomials
[1],

(2 j + 1)Pj (x) = P ′
j+1(x) − P ′

j−1(x), (4.32)

we obtain for the first derivative

�′
j (x)

2
√

2 j + 1
=

√
2 j − 1� j−1(x) +

√
2 j − 5� j−3(x) + · · · +

{
�0(x), j odd,√

3�1(x), j even.
(4.33)

Substituting (4.33) into (4.23), we find that Ki j satisfies

Ki j = 2�i j �i j , (4.34)

where �i j =
T
i j is defined in (4.17) and �i j = √

2i + 1
√

2 j + 1.
Also,

� j (0) = (−1) j
√

2 j + 1, � j (1) =
√

2 j + 1, (4.35)

which is obtained by differentiating the ordinary differential equation satisfied by the
Legendre polynomials and evaluating results at the boundary points.

Substituting (4.34) and (4.35) into (4.29), we obtain

s̃n
il = 2n

k−1∑
j=0

�i j
[
a (−1) j sn

j,l+1 − b (−1)i sn
j,l−1 + (−a + b(−1)i+ j + 2
i j ) sn

jl

]
. (4.36)

Expressions for the transition matrices in (4.36) and (4.18) are exactly the same.
The matrices r1 and r0
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TABLE VI

Transition Matrices for the First-Derivative

Operator Using the Legendre Scaling Function[
− 1

2

]
[0]

1

2

[−1 −√
3

√
3 3

] [
0

√
3

−√
3 0

]

1

2


 −1 −√

3 −√
5

√
3 3

√
15

−√
5 −√

15 −5





 0

√
3 0

−√
3 0

√
15

0 −√
15 0




Note. From left to right, r1; r0 shown for k = 1, 2, and 3;
and a = b = 1/2.

4.2.2. Transition matrix in the interpolating basis. For the interpolating basis �i (x)
defined in (3.17), coefficients Ki j in (4.23) reduce to

Ki j = √
w j

d

dx
�i (x j ) (4.37)

and can be evaluated numerically by differentiating the Larange polynomials in (3.17).
Using (3.17) and (4.35) we may evalutate the boundary terms

�i (1) = √
wi

k−1∑
l=0

√
2l + 1Pl(xi ), (4.38a)

�i (0) = √
wi

k−1∑
l=0

(−1)l
√

2l + 1Pl(xi ). (4.38b)

The matrices r1 and r0 are shown in Table VII for k = 1, 2, and 3, and a = b = 1/2. Again
we note that r−1 = − r T

1 for this choice of parameters.
To summarize the results of this section.
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and b, the transition matrices scale as 2n , consistent with the two-scale difference equations
and the degree of homogeneity of the operator.

4.3. Multiwavelet Derivative Operators as Analogs of Finite Differences

Derivatives in wavelet bases (such as Daubechies’ wavelets) on a subspace Vk
n may

be viewed as finite difference schemes [4]. The nonstandard forms of these operators
are easy to compute and to apply. The multiresolution representation allows us in this
case (with additional algorithms) to avoid computations with matrices of high condition
number [16].

In the multiwavelet representation of the derivative, the derivative operator on Vk
n is

representated by a block tridiagonal matrix, subject to the choice of parameters a and
b. In order to characterize these choices, let us consider the collection of matrix blocks
{r1, r0, r−1} in (4.31) as a “block stencil,” by analogy with standard finite differences. Using
this stencil, we may specify a variety of operators, including block analogs of central,
forward, and backward differences.

The advantage of the block structure becomes clear if we consider boundary conditions.
In particular, we do not change the order of the approximation by incorporating boundary
conditions (see (4.30)). The difficulty of maintaining order near the boundary has been a
problem in ordinary finite differences. At the root of this problem is the location of the grid
points used in the discretization. Using equally spaced points in high-order approximations
leads to an operator with a high condition number, thus negating their usefulness.
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TABLE IX

Dirichlet (Zero) First-Derivative Operators

Operation Stencil Equation a b

Forward difference r f l
0 , r f l

−1 (4.39) 1 0
r f r

0 (4.40) 1 0

Backward difference rbl
0 (4.39) 0 1

rbr
1 , rbr

0 (4.40) 0 1

[
rl

0

]
i j

= (1 − a)�i (1)� j (1) − Ki j , (4.39b)[
rl
−1

]
i j = a �i (1)� j (0). (4.39c)

For the right interval f (1) = 0, we set f (x̄l+1) = 0 and obtain[
rr

1

]
i j

= −b�i (0)� j (1), (4.40a)[
rr

0

]
i j

= −(1 − b)�i (0)� j (0) − Ki j , (4.40b)[
rr
−1

]
i j = 0. (4.40c)

Using (4.39) and (4.40) we define various stencils in Table IX (the superscript notation l
is used to denote the left boundary and r the right). Together with the stencils in Table VIII,
we may construct backward and forward difference matrices

Db =




rbl
0

rb
1 rb

0
· · ·
rb

1 rb
0�b

rb
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which verifi
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5. REPRESENTATION OF THE EXPONENTIAL OPERATORS

IN MULTIWAVELET BASES

We can significantly improve properties of time-evolution schemes for advection–
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5.1. Periodic Boundary Conditions

In the case of periodic boundary conditions the exponential operator e�d2/dx2
is diagonal-

ized in the Fourier basis. Although the derivation in this section uses the Legendre scaling
functions, the results are valid for the interpolating scaling functions as well.

Let us expand u(x, � ) into its Fourier series,

u(x, � ) = e�d2/dx2
u(x) =

∑
�	Z

û�(� )ei2�vx , (5.5)

where the coefficients are given by û�(� ) = e−� (2��)2
û� and û� = ∫ 1

0 u(x)e−i2��x dx . Using
the Legendre expansion on Vk

n ,

u(x) =
2n−1∑
l=0

k−1∑
j=0

sn
jl �n

jl(x), (5.6)

we can express the Fourier coefficients û� as

û� =
2n−1∑
l=0

k−1∑
j=0

sn
jl

∫ 2−n (l+1)

2−nl
�n

jl(x)e−i2��x dx = 2�√
N

2n−1∑
l=0

k−1∑
j=0

sn
jl�̂ j (2��/N )e−i2��l/N ,

(5.7)

where N = 2n .
Next, we expand u(x, � ) in the Legendre basis,

u(x, � ) =
2n−1∑
l ′=0

k−1∑
j ′=0

s̃n
j ′l ′�

n
j ′l ′ (x), (5.8)

and use the Fourier series (5.5) to obtain the Legendre coefficients

s̃n
j ′l ′ =

∑
�	Z

e−� (2��)2
û�

∫ 2−n (l ′+285.4446 269.2901 Tm·(ö)1.098 0 TD·0 Tc·(Z)Tj·9.9626 0 0 9.9626 250.21ients

� 	
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where


1
j ′ j (�, � ) = (2�)2e−��2

�̂ j ′ (�/N ) �̂ j (�/N ),
(5.17)


2
j ′ j (�, � ) = (2�)2e−��2

�̂ j ′ (�/N ) �̂ j (�/N ).

The sums in (5.16) can be computed using the FFT. This result shows that the boundary
conditions do not present a difficulty for multiwavelets. The nonstandard form of the expo-



178 ALPERT ET AL.

TABLE X

Comparison of Exponential Matrices Computed Using the Fourier Method and the

Scaling and Squaring Method

Number of subintervals

Order (k) 4 8 16 32 64

2 2.1 × 10−1 4.9 × 10−2 1.7 × 10−2 4.5 × 10−3 1.1 × 10−3

4 7.6 × 10−3 3.2 × 10−4 2.2 × 10−5 1.4 × 10−6 9.0 × 10−8

6 1.6 × 10−4 2.2 × 10−6 4.0 × 10−8 6.4 × 10−10 3.6 × 10−11

8 3.7 × 10−6 1.3 × 10−8 1.1 × 10−10 1.1 × 10−11 2.5 11�6 0 TD
f
0.5 0 TD
(�)Tj0 7.9701  7.97.9701  7.97.970  7.97.9 Tc
(83) 19813 0 0 4.9813 28 re
f
BT��
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By using the semigroup approach, we obtain the solution at each time step as a result
of matrix–vector multiplication and pointwise multiplication of functions. If operators and
functions have a sparse representation (as in the multiwavelet basis), then these operations
may be performed in a fast manner, at a cost proportional to the number of significant
coefficients. We thus obtain an adaptive algorithm.

In the following examples, we construct the discrete, second-derivative operator D2 =
(DT

b Db + DT
f D f )/2 as described in Section 4.3.4. We construct matrix exponentials using

the scaling and squaring method described in Section 5.3.

6.1. The Heat Equation

We begin with this simple linear example in order to illustrate several points and provide
a bridge to the nonlinear problems below. For the heat equation, the nonlinear term N = 0,
the solution (2.10) may be written as

u(x, t) = etLu0(x), (6.4)

where L= ∂x (a(x)∂x ). The solution u(x, t) is computed by discretizing the time interval
[0, 1] into Nt subintervals of length �t = 1/Nt , and by repeatedly computing

U (t j+1) = e�tLU (t j ), (6.5)

for j = 0, 1, 2, . . . , Nt − 1, where U (t0) = U (0) is the discretization of the initial condition
as described in Section 3.3. The numerical method described is explicit and unconditionally
stable, since the eigenvalues of e�tL are less than 1. The operator e�tL remains sparse for any
t > 0, and therefore, we could have computed u(x, t) directly. In this example a relatively
small time step is selected in preparation for the incorporation of the nonlinear term.

EXAMPLE 1. Let us consider (6.1) with a(x) = 1, and the initial condition

u0(x) = sin(�x), (6.6)

on the unit time interval, and choose the time step �t = 10−1. Interpolating scaling functions
of order k = 6 were used on eight equal intervals to discretize the problem. The exponen-
tial operator was computed using the methods described in Section 5.3, with coefficients
truncated at a threshold of 	 = 10−6. In Fig. 1 we show the projection of the solution on Vk

n

for various time steps, and we note that the relative L2 error (computed using 100 equally
speaced points) never exceeded ≈1.6 × 10−7. See a similar behavior of this type of solver
for periodic boundary conditions in [7].

EXAMPLE 2. In Fig. 2 we illustrate our method for the computation of exponentials with
variab
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FIG. 1. The solution in Example 1 for various time steps.

multiwavelets. The cost of the algorithm which we describe is proportional to the number
of nonzero coefficients in this representation. We thus obtain an adaptive method, where
the cost of each new time step is proportional to the number of significant coefficients at
that time step.

FIG. 2. The solution in Example 2 at various time steps.
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the accuracy of our approach by comparing the approximate wavelet solution Uw(x, t) at
some time t , with the exact solution Ue(x, t) using the relative L2 error

E(t) = ‖Uw − Ue‖2

‖Uw‖2
, (6.14)

where the exact solution Ue(x, t) is derived by the Cole–Hopf transformation (see, for
example, [23]).

Let us summarize an algorithm for the adaptive computation of Burgers’ equation using
multiwavelets. We provide this description to illustrate the practical implementation of the
adaptive selection of basis functions.

Initialization.

• Construct the derivative operator D as described in Section 4 and compute its nonstan-
dard form as described in Section 3.3. Next, construct the symmetric second-derivative oper-
ator D2 (see Remark 4.2), and the nonstandard forms of exponential operators Q j (�tL), j =
0, 1, . . . , M + 1, using the modified scaling and squaring method (see Section 5.3 and [8]).

• Discretize the initial condition U (t0) = u0(x) on Vk
n and compute its wavelet transform,

truncating coefficients below an accuracy 	, as described in Section 3.3.2.

Evaluation. For each time step ti , do the following:

• Perform the predictor step in (6.11) by computing the derivatives Ux (ti−m) =x2 Tm
(x z(/F24 1 Tf
0.78 0TJ
F24 1 T77057 424.9863 Tm9
0 2)20(v)15(ele0-178.78]626 273Uc0 00 0 6.9738 415.4261
(�)1 Tf.9626 0 0  Tf
0.5308(ma(fox4764 Tm
[(and)5.)]i)Tj
/F6Ðe)-178.7(its)-178 0 0 9.9.4(the50(d)0308(multiplic)Tj
/,)030
/FTj
/F2308(
-13308(-1.7112 TD
308(/F22 308(prod.1867.4(predictor)-1f
174 
/F6 1 Tf
-12.4043 -1.3 TD
(�)Tj
/F22 1 Tf
1 0 TD
[(Discretize)-17.9738 0 0 6.9738 4053.0142 39Tj
/F7Tm
(x)Tj
/F22 1 Tf
9.9626 0 0 9.9626 409.3878 409.4326 Tm
(()Tj
/F24 1 Tf
0.333 0 TD
(t)Tj
7.0137 39e)-21238 415.4261 407.9382 T555.5 0 TD

9626 409.3878 404842 ep)-167.4(in)-167.4((6.11))-44.79 39Tj
/F7Tm
(xting)-167.4(the)-167.4(deri)25(v)2(se0052 39e)-21238 415F22 1 Tf
1 0 TD
[(Discretize)-17.9738 0 0 6.9738 409.9ing6 39Tj
/F7Tm
(x)Tj
/F22 1 Tf
9.9626 0 0 9.9626 409.3878 409.4326 Tm
(()Tj
/F24 1 Tf
0.333 0 TD
(t)Tj699ing1 39e)-21238 49.90838 303.7a)308(67.4(p-34. 0 T.9626 0 038 303D
[(cients)-250(belo)25(w)-250(a)0(n)-253, TD
(t)Tr(and)-208.6([8]).2Tj
/F24 1mTj
/F22 1 Tf
9.947)Tj
/F8 1 Tf
0.368 0 TD.9738j
/F24 1
0.6898 0 TD
())Tj
/F7 1 Tf
0.333 0 TD
(�)T)Tj
/F8  Tf
0.6616 0 TD
(j)Tj
/F6 1 Tf
0.5427 0 TD
(�)Tj
/F22 1 Tf9738 0 0-1.3 TD
(0)Tj
/F7 1 Tf
0.5 0 TD
� TD
(m)Tj
/F22 1.4976 0 TD
(1. TD
(tThen.7318 45.9738 and)-208.6([8].9783 
/F6 1 Tf
-12.4043 -1n)-167.4((6.11))-13.0974 24 .0353283.8177 457.4764 Tm
())Tj
Tj
/0825 243. 0970(s)]TJ
/F24 1 Tf
25.3701 0 TD
(U)Tj
6.9738 0 0 6.9738 4053.1 Tf 24 .0353283.8)Tj
/F22 1 Tf
9.9626 0 0 9� Tf
0.333 0 TD
(9.4326 Tm177 457.4764 Tm
())Tj
T1671606 243. 0970(s)03.7s)-250(m,)]TJ
-22ng:)]2 0 TD
[(ed)-208.6(
6.121g)-208.7(and)-208.6(squaring)-208.6626 271.7962(/F22 302/FTcorrw)-250(a962(0(the)962(in2 302/FTa(a962(0imilar(a962(manner2 302/FT
-13303(-1.7112 TD.4(predictor)-167454TJ
/F6 1 Tf
-n)-167.4((6.11))-1678272 3699i83
/F22 1 Tf
-167.4(the)-167.4(deri)25(v)25(a84(st.4(.57830(s)]TJ
/F24 1 Tf
25.3701 0 TD
(U)Tj
6.9738 0 0 6.9738 405.1i)25 3699i83
/F22 )Tj
/F22 1 Tf
9.9626 0 0 9� Tf
0.333 0 TD
(9.4326 Tm177 457.4764 Tm
())Tj
T1
/F1830.4(.57830(s)03.7s)302/FT(m,)]TJ303(ng:)]TJ
/F303()Tr(and)-208.6([8]F30.3981)-208.7(ankTj
/F22 1 Tf
9.670i)Tj
/F6 1 Tf
0.68 0 TD.9738)Tj
/F8  Tf
0.6616 0 TD
(j)Tj
/ 1 Tf
0.333 0 TD
(�)T)Tj
/F8 2Tf
0.6616 0 TD
(j)Tj
/F6 1 Tf
0.5427  TD
(m)Tj
/F22 18226738 0 0-1.3p)]TJ
/F2untilTJ
-22ng:)]3.7s)-250(556 0 Ts)Tjs4764 Tm
[(andtThen.7318 sTj
and
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FIG. 3. The solution in Example 4 for various time steps.

EXAMPLE 4. In this example we compute the solution to Burgers’ equation using the ini-
tial condition (6.6) with � = 10−3, on the unit time interval, where �t = 10−3. The smallest
interval in the discretization was �x = 1/1024 ≈ 10−3, so �x ≈ �t (on the finest scale).
Interpolating scaling functions of order k = 6 were used, and operators were computed us-
ing the methods described in Sections 4 and 5.3, with coefficients truncated at a threshold
of 	 = 10−6. The threshold for the implicit iteration was set at � = 	/10. In Fig. 3 we show
the projection of the solution on Vk

n at various time steps, and Fig. 4 illustrates the error,
while Fig. 5 gives the number of significant coefficients per time step. We note that the
maximum error was 5.1 × 10−6, and that the number of operations needed to update the
solution is proportional to the number of significant coefficients.

EXAMPLE 5. We now compute the solution of Burgers’ equation with the initial condition

u(x) = sin(�x) + 1

2
sin(2�x) (6.15)

and � = 10−3, on the unit time interval, where �t = 10−4. The solution to this equation

TABLE XI

Results for Example 3 with Accuracy Threshold � = 2−n(k−1/2), for
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TABLE XII

Results for Example 3 with Accuracy Threshold � = 2−n(k−1/2), for n = 1, 2, 3, and 4,

for Various Values of k, and Using a Fourth-Order Scheme in Time

k 	 �t m Nc L2 error

4 8.8 × 10−2 Ua

7.8 × 10−3 10−2 4 40 9.0 × 10−3

6.9 × 10−4 10−2 6 56 6.8 × 10−4

6.1 × 10−5 10−2 7 72 1.5 × 10−4

6 2.2 × 10−2 10−2 2 36 1.7 × 10−2

4.9 × 10−4 10−2 5 72 5.4 × 10−4

1.1 × 10−5 10−2 6 84 1.5 × 10−5

2.4 × 10−7 10−3 7 144 6.2 × 10−7

8 5.5 × 10−3 10−2 2 48 6.4 × 10−3

3.1 × 10−5 10−2 5 96 4.9 × 10−5

1.7 × 10−7 10−3 6 112 2.5 × 10−7

9.3 × 10−10 10−3 7 224 1.8 × 10−9

10 1.4 × 10−3 10−2 3 80 3.3 × 10−3

1.9 × 10−6 10−2 5 120 2.6 × 10−6

2.6 × 10−9 10−3 6 140 3.4 × 10−9

3.6 × 10−12 10−4 7 300 8.9 × 10−11b

12 3.5 × 10−4 10−2 3 96 3.7 × 10−4

1.2 × 10−8 10−3 5 144 8.0 × 10−8

4.1 × 10−11 10−3 6 192 1.3 × 10−10

a Unstable due to large 	.
b Accuracy beyond ≈10−10 cannot be obtained using double-precision arithmetic since the com-

putation involves matrices with a condition number as large as 105.

FIG. 4. The error in Example 4 for various time steps.
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FIG. 7. The error in Example 5 for various time steps.

and Fig. 8 shows the number of significant coefficients per time step. The maximum error
was 3.0 × 10−6.

EXAMPLE 6. In this example we recompute Example 4 with � = 10−4
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include pictures. In this case, the maximum error was 2.5 × 10
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