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on a given scale and are organized in small groups of several functions (thus, multiwavelets)
sharing the same support. On the other hand, the basis functions are discontinuous, similar
to the Haar basis and in contrast to wavelets with regularity. As was shown in [3] (dis-
crete version of multiwavelets) and [2], multiwavelet bases can be successfully used for
representing integral operators. A wide class of integrodifferential operators has effectively
sparse representations in these bases, due to vanishing moments of the basis functions. An
effectively sparse matrix representation is one that differs from a sparse matrix by a matrix
with a small norm.

However, this early success with integral operators did not immediately lead to the suc-
cessful solution of partial differential equations. The requirements for solving partial dif-
ferential equations, especially adaptively, differ somewhat from those for integral equations
and extend beyond the property of vanishing moments.

In this paper we demonstrate that the multiwavelet bases are well suited for high-order
adaptive solvers of partial differential equations, and we argue that they present a better
choice than other wavelet bases. The representation of differential operators in these bases
may be viewed as a multiresolution generalization of finite difference schemes, discontin-
uous finite element schemes, introduced in [11] (see also [10] and references therein), and
finite spectral elements (see, for example, [20, 21]). We expand on these points later in the
paper.
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An extension of such representations using bases on an interval [12] may also be in-
terpreted as a finite difference scheme on the finest scale with a ”corrected” stencil near
the boundary. The problem of accommodating boundary conditions in such cases is very
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5. REPRESENTATION OF THE EXPONENTIAL OPERATORS

IN MULTIWAVELET BASES

We can significantly improve properties of time-evolution schemes for advection–
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FIG. 1. The solution in Example 1 for various time steps.

multiwavelets. The cost of the algorithm which we describe is proportional to the number
of nonzero coefficients in this representation. We thus obtain an adaptive method, where
the cost of each new time step is proportional to the number of significant coefficients at
that time step.

FIG. 2. The solution in Example 2 at various time steps.
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