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1. INTRODUCTION

In this paper we construct representations of operators in bases of multiwavelets, with
the goal of developing adaptive solvers for both linear and nonlinear partia differential
equations, and we demonstrate success with a simple solver. We use multiwavelet bases
constructed in [2] following [3, 5]. These bases were also considered in [15], although not
for numerical purposes. Multiwavel et bases retain some properties of wavel et bases, such as
vani shing moments, orthogonality, and compact support. The basisfunctions do not overlap
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on agiven scaleand are organized in small groups of several functions (thus, multiwavel ets)
sharing the same support. On the other hand, the basis functions are discontinuous, similar
to the Haar basis and in contrast to wavelets with regularity. As was shown in [3] (dis-
crete version of multiwavelets) and [2], multiwavelet bases can be successfully used for
representing integral operators. A wide class of integrodifferential operators has effectively
sparse representations in these bases, due to vanishing moments of the basis functions. An
effectively sparse matrix representation is one that differs from a sparse matrix by a matrix
with asmall norm.

However, this early success with integral operators did not immediately lead to the suc-
cessful solution of partial differential equations. The reguirements for solving partial dif-
ferential equations, especially adaptively, differ somewhat from those for integral equations
and extend beyond the property of vanishing moments.

In this paper we demonstrate that the multiwavel et bases are well suited for high-order
adaptive solvers of partial differential equations, and we argue that they present a better
choice than other wavelet bases. The representation of differential operatorsin these bases
may be viewed as a multiresolution generalization of finite difference schemes, discontin-
uous finite element schemes, introduced in [11] (see also [10] and references therein), and
finite spectral elements (see, for example, [20, 21]). We expand on these points later in the
paper.

There are two main reasons for using wavelet bases as a tool for computing solutions
of partial differential equations (PDES). First, the fact that advection—diffusion equations
(for example, the Navier—
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An extension of such representations using bases on an interval [12] may also be in-
terpreted as a finite difference scheme on the finest scale with a " corrected” stencil near
the boundary. The problem of accommodating boundary conditions in such cases is very
similar to that for the usua finite difference scheme, in that thereis aloss of quality of ap-
proximation near the boundary. This is due either to the loss of the order of approximation
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thepressureterm from (2.4)) iswell known and appearsin avariety of formsintheliterature.
Theintegral operator (2.8) can be obtained using the Riesz transform following aderivation
presented, for example, in [22].

Equation (2.9) shows that the Navier—Stokes equations are integrodifferential equations.
Yet, using the singular integral operator (2.8) for numerical purposes has largely been
avoided because of a difficulty in obtaining an accurate procedure for its application via
standard methods. However, in a wavelet basis with a sufficient number of vanishing mo-
ments (for a given accuracy), the projector P is nearly local on wavelets and, thus, has
a sparse representation. This approximate locality follows directly from the vanishing-
moments property. Precise statements about such operators and examples can be found in
[6] (seedso[4, 5)]).

This observation provides uswith areason to require that the vani shing-moment property
be satisfied for the basis functions. Thisis exactly the same consideration that one needs to
useinthetheory of thevortex method [9], except that we consider no further approximations
of the Navier-Stokes eguations.

A second reason for using wavelet bases is found if we consider numerical methods for
time evolution of (2.1). Using the semigroup approach (see for example, [17, 19, 22]) we
rewrite the PDE (2.1) as anonlinear integral equation in time,

u(x, t) = e2y,(x) +/t e N (u(x, )d , (2.10)

to

and consider aclass of exact linear part (ELP) time-evolution schemes[7, 8]. A distinctive
feature of these schemesisthe exact evaluation of the contribution of the linear part. When
the nonlinear part is zero, the scheme reduces to the evaluation of the exponential function
of the operator (or matrix) £ representing the linear part.

Thestability of traditional time-discretization schemesfor advection—diffusion equations
is controlled by the linear term, and these equations typically require an implicit marching
scheme to avoid an impractically small time step. Asis show in [8], with an explicit ELP
scheme it is possible to achieve the stability usually associated with implicit predictor—
corrector schemes. Even if an implicit ELP scheme is used, as in [7], an approximation
is used only for the nonlinear term. This changes the behavior of the corrector step of
implicit schemes. The corrector step iterations of the usual implicit schemesfor advection—
diffusion equationsinvol veeither bothlinear and nonlinear termsor only thelinear term [18].
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two and three dimensions, additional i ssuesof efficiency (whichwewill consider separately)
have to be addressed to make such schemes practical. Numerical schemes of ELP type,
however, provide significant advantages and are available only if the resulting matrices are
sparse in the system of coordinates chosen for computations. Again the basic reason for
sparsity (for agiven but arbitrary precision) is the vanishing-moment property.

The next step in our assessment of the requirements for the basis is to consider the
boundary conditions. In (2.1) and (2.10) we incorporate the boundary conditions into the
operator £. For example, u = £~1v meansthat u solves Lu = v with the boundary conditions
Bu=0. Similarly, u(x,t) =e
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3.1.3. Multiwavelets. We introduce piecewise polynomia functions o,..., k-1 t0
be an orthonormal basis for W§,

1
/ i(X) j(X)dX = ije (3.10)
0
Since WK V§, thefirst k momentsof o,..., k1 vanish:
l .
/ j)x'dx =0, i,j=0,1,..., k—1 (3.11)
0
The space W is spanned by 2"k functions obtained from o, ..., k1 by dilation and
trandation,
M) =22 ;@x=1), j=0,...,k—=1, 1=0,...,2" -1, (3.12)

and supp (D@6 1 (
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TABLE I .
I 4 rp ‘atig Ba QgF' ftl »

[ |
k=1

Rix) =V 2
k=2 VA

Rix)=(1— \/3x)/2

Ro(x) = (1+ 3x)/2
k=3

Ri(x) = (— 3x+ \/Exf)/z
Ra(x) = (B +5X))/(2 2)
Rs(x) =( 3x+ B5x?)/2

have the following properties:

1. The functions Ry, ..., Rk—1 form an orthonormal basis on [—1, 1] with respect to the
inner product f, g (-1, = f_ll f(x)g(x) dx.
2. For j=0,...,k—1,Rj is a linear combination of Legendre polynomials given by

Rj() = VW) iS00 + 3)Pi(xj)Pi(x).
3. Any polynomial f of degree less than k can be rep@sented by the expansion f(x) =
Z'};(l)dj Rj(x), where the coefficients are given by dj = " wj f(x;), j =0,...,k —1.

The proof of Proposition 3.1 is straightforward and we omit it here. Examples of inter-
polating basis functionsfor k = 1, 2, and 3 are given in Table .

Remark 3.1.
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For Daubechies’ wavelets, thefilter coefficients are used to construct the scaling function

and thewavelet , whereas, in our case, functions and  are known, and we use them
to construct the filter coefficients.

The relations (3.2) and (3.3) between the subspaces may be expressed by the two-scale
difference equations,

T
H

V_k=
)= 2> (" j@)-h{ j@x-1), i=0,..k-1 (3189

o

[y

i

V_k=

)= 2> (g9 j@)+a jx—-1), i=0,....k=1, (3.180)
=0

.\/
where the ¢ \/aefflm ents g,(JO), g,l) depend on the choice of the order k. The functions \/2 0

(2x), . \V‘ 1(2x) in (3.18) are orthonormal on the interval [0, 2] whereas 2 ¢
2x — 1), , 2 k—1(2x —1) are orthonormal on the interval [2, 1]. The matrices of co-
efficients

HO = (h@}, HO = {h®}, 6O ={g?}, cW={g¥} (319

are analogs of the quadrature mirror filters (see, for example, [14]). The two-scae
equations (3.18) lead us to a multiresolution decomposition. We now derive the necessary
relations for multiresolution reconstruction.

By construction, we have i, ; = ij, i, ji
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(x—1) = %Z WD 5x) +g® ). (3.230)

Relations (3.18) and (3.23) yield algorithms for transition between different scales of the
multiresolution analysis, which we briefly describe in Section 3.3.

3.2.1. QMF coefficients. We explicitly compute the quadrature mirror filter (QMF) co-
efficientsasmatrices H®, HW, G, and G). We computg the matrix H™® by multiplying
both sides of the two-scale difference equation (3.18a) by 2 ;(2x). Dueto orthogonality,
we obtain

0 v_ 2
h{) = 2/0 i(X) j(2x)dx. (3.24)
Applying Gauss-L egendre quadrature, we get

‘0)—~£Zwm .() (n)- (3.259)

We proceed in the same manner to obtain from (3.18) the equations

k—1
hi(jl) = ”%Zwm i(Xm;l) j(Xm2>
m=0
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TABLE IV
C ffict »§ Matric WHO € rl ¥ rp latlg Sca'lg
F ftt wf rk=1,2,a4'3
|

4] i[“ﬁ “iﬂ

2l 4 2|1- 3 3- '3

V_ Voo v
42+12 15 12 6+6 10 6
1 Voo NV Voo N
—~/|—15 6+6 10 42 15 6+6 10
72 2 Vo Vv V__
6 —-12 6+6 10 42—12 15

VK, the function f (x) is represented by the Legendre expansion

2"—1k-1

FoO=>"> sh ik, (3.30)

1=0 j=0

where the coefficients s, are computed as

k 102 "0+D) (3.3/F24 1 Tf6.9733310 0 6.97
s = ? f(x) ﬁ](x%gx (

The decomposition of f (x)lio the multiwavelet basisis given byx
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The relations between the coefficients on two consecutive levels m and m+1 are
(decomposition step)

0 1
st = (h‘ st +h(PsMat,), (3.343)

di =" (ofs]a" + g sTaka). (3.34b)
=0

Theserelationsfollow from (3.18), (3.31), and (3.33). Thus, starting with 2"k valuess]}, we
apply repeatedly the decomposition procedure (3.34) to compute the coefficients on coarser
levels m=n—-1,n—-2,...,0.

For multiwavelet reconstruction, we compute the coefficients sf, from the multiwavelet

coeff|C|entssJO, il m=0,...,nusing recursively the following relations (reconstruction
step),
k—1
1 _—
s =D (

—
Il
o
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subintervals and examine the error on each subinterval. Due to orthonormality, the error on
some subinterval | is "1 —f" ;= d ,. Itiseasy to verify that in order to maintain
the global condition

fret—fn o< 7, (3.39)
we may truncate the (n + 1)-scale representation when
[d||, =272 £+, (3.39)

Using (3.39) as a truncation threshold, we set to zero all difference coefficients which
satisfy that constraint. In so doing, we may adaptively reduce the number of coefficientsin
the representati on, while maintaining the specified accuracy .

3.3.3. Pointwise multiplication of functions. We now briefly describe the procedure
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Also, since d‘ix is a local operator, only interactions between neighboring intervals are

involved; that is, r;
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where coefficients Mg’,’) are the moments of functions  f,

1
M‘j‘,”:/o nOXPdx, j=0,....k—1 (4.14)

Then the matrices r; are required to satisfy

1 k-1

pMEY =2 Z ZM(j?)[rI]ij, p=0,...,.k—1 (4.15)

I=—1j=0

Itisnot difficult to verify that the complete system (4.12), (4.15) contains 3k2 — 2 linearly
independent equations for 3k? unknowns (some equations are duplicated). As we will
see, these two extra degrees of freedom account for the interaction between neighboring
intervals. By setting a =[r—1]oo and b =—r1]oo



ADAPTIVE SOLUTION IN MULTIWAVELET BASES 167

The corresponding matrices |I,, |1, 1m Onthenthlevel can be computed by rescaling,
|nm = 2n I—m> |nm = 2n I—m> |rr]n = 2n I—m- (419)

Thus, the nonstandard form of the operator dd—x in the multiwavelet basis is completely
determined by the matricesr,. We have obtained a parametrized family of weak derivative
operators.

4.2. Computation of the Transition Matrix (Approach II)

Inthissection weuseatraditional approachindefining theweak derivative. Thisapproach
amounts to the integration by parts to compute the elements of the transition matrix of the
operator dd—x (for both the L egendre and the interpol ating bases). This approach permitsusto
establish the meaning of the free parametersa and b in (4.18). We show that for a particular
choice of a and b, the order of approximation is maximized. Let us consider (4.2) for the
derivative operator, where f  C
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and similarly on the boundary X;. When approximating f (x;+1) by finite sums, an error is
incurred so that from the left,

k—1

f(Xe) =223 s @+ &, (4.253)
j=0
and from theright (I = 2" — 1),
-1
f(Ke) = 22> 80y O+ . (4.25b)

i=0

Inthe Appendix we derive estimatesfor thetruncation errors, wherewe separate theleading-
order term,

W =27k + 0 (27D, (4.263)
O = 271k  + O (2D, (4.26b)
where
- K f (X1 41). (4.26¢)
k — (2k)| 1+1

To approximate the interior boundary values (4.25), we use weighted contributions from
both sides of the boundary as
k—1
f(Xe) =272 [A-a)s)y j(D)+as],y jO] +@-a) §+a d, (427
j=0
where 0<a < 1isaparameter. Similarly, on the boundary x = x; we have

k—1
f(x)=2"23"[@—=b)s}y ;@ +bs]_, ;W] +@—b) T+b P, (428
j=0

where 0=b <1 is a parameter. We show in Section 4.2.1 that parameters a and b are
identical to those introduced in (4.16). To approximate the external boundary values, we
may set a =0in (4.27) (for theright boundary), and b = 0in (4.28) (for the left boundary).
Alternatively, in the case of Dirichlet boundary conditions, the exact values of f (x) may be
used at x =0 and 1 instead. We discuss this further in Section 4.3.

Substituting (4.27) and (4.28) into (4.22), we obtain

k—1

si=2"> {[@-a) (D) j()—(L—Db) i(0) ;O — Kils}

j=0
+a i(1) Oy —b (0 jDs]_1} + K, (4.29)

where

=22 @) (1—a) +a(-1)f
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We can estimate the error of theresulting derivative function f (x) by noting that the coeffi-
cientsin (4.29) (and theerror termin (4.30)) arerescaled on the subspace V¥ by an additional
factor of 22 (see (3.6)). Since the subinterval length ish = 27", the approximation error
is O(hk™1).

This estimate demonstrates the high order of approximation of the method. It is valid
up to and including the boundaries, since boundary conditions are set by selecting specific
valuesfor parametersa and b in[0, 1] (see Section 4.3), and, thus, does not affect the order
of approximation.

Remark 4.1. We note, however, that if k is odd, the leading-order term in (4.30) can
be eliminated by setting a=b = 3, which gives O(h¥). The leading-order term is also
eliminated for k = 1 (Haar) whena=1and b =0, or vice versa.

Comparing (4.29) with (4.8), weidentify [r4]ij, [roij, and [r-1]ij as

[rdij = —b i (0) (D), (4.31a)
[rolij =(1—2a) (D) j()—@—=Db) i(0) ;) — Kij, (4.31b)
[r-1ij =a (1) ;(O). (4.31¢)

Clearly, the matricesr—; and r; have rank 1, as we mentioned before.

4.2.1. Transition matrix in the Legendre basis. We provide explicit expressions for the
parametersin (4.31) for the Legendre basis. Using arelation for the Legendre polynomials

(1],
(2] + DP;j(x) = Pypa(x) — Pj_y(x), (4.32)

we obtain for the first derivative

(x) (x), J odd,
NI = 271 L)+ /2] =5 j_a(X) + - {v"_ 433
o1 VAT il V2 TS e 3,00, jeven
Substituting (4.33) into (4.23), wefind that K;; satisfies
Kij =2 ij ijs (4.34)
) — v__ N
where ;= [ isdefinedin(4.17)and ;j= 2i+1 2j+1
Also,
0 =(D1V2j+1, j(1)=2j+1, (4.35)

which is obtained by differentiating the ordinary differential equation satisfied by the
L egendre polynomials and evaluating results at the boundary points.
Substituting (4.34) and (4.35) into (4.29), we obtain

Si=2") [a(=1)Is] .y —b(=1)'s],_; + (—a+Db(=1)"T +2 j))s}]. (4.36)

Expressions for the transition matricesin (4.36) and (4.18) are exactly the same.
The matricesr, and rg
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TABLE VI
Tra 1 RZMatric &f rt4 *Fir &D rian «
1 1 ,
Op rat rUdg t4 Le “3'r ‘Scally F oy

1
5] @
1 \—/1 —\/é E)/ 3
23 3 -3 0

-1 -3 -5 0 3 0
1| Vo v__ V_ v__
= 3 3 15 - 3 0 15
20 Vo Vv v__

-5 —-15 -5 0O —15 o0

Note. From left to right, ry; ro shown fork =1, 2, and 3;
anda=b=1/2.

4.2.2. Transition matrix in the interpolating basis. For the interpolating basis (x)
defined in (3.17), coefficients Kj; in (4.23) reduce to

Vv__d
Kij = Wj& i(xj) (4.37)

and can be evaluated numericaly by differentiating the Larange polynomials in (3.17).
Using (3.17) and (4.35) we may evalutate the boundary terms

k—1
="w > Vo 1P (%), (4.383)
1=0
v k—1 N
(0= "Wy (-1 2 +1P(x). (4.380)

1=0

Thematricesr; andrg areshownin TableVII fork =1,2,and 3,anda =b =1/2. Again
wenotethatr—; = — rlT for this choice of parameters.
To summarizetheresults of thissection.
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and b, thetransition matrices scale as 2", consi stent with the two-scale difference equations
and the degree of homogeneity of the operator.

4.3. Multiwavelet Derivative Operators as Analogs of Finite Differences

Derivatives in wavelet bases (such as Daubechies wavelets) on a subspace VK may
be viewed as finite difference schemes [4]. The nonstandard forms of these operators
are easy to compute and to apply. The multiresolution representation alows us in this
case (with additional agorithms) to avoid computations with matrices of high condition
number [16].

In the multiwavelet representation of the derivative, the derivative operator on VK is
representated by a block tridiagonal matrix, subject to the choice of parameters a and
b. In order to characterize these choices, let us consider the collection of matrix blocks
{r1,ro,r-1}in(4.31) asa“block stencil,” by analogy with standard finite differences. Using
this stencil, we may specify a variety of operators, including block analogs of central,
forward, and backward differences.

The advantage of the block structure becomes clear if we consider boundary conditions.
In particular, we do not change the order of the approximation by incorporating boundary
conditions (see (4.30)). The difficulty of maintaining order near the boundary has been a
problem in ordinary finite differences. At the root of this problem isthe location of the grid
points used in the discretization. Using equally spaced pointsin high-order approximations
leads to an operator with a high condition number, thus negating their usefulness.
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TABLE IX
Diric ! ¥ (Z v ) Fir &D v1'an’ O vat rq

Operation Stencil Equation a b
Forward difference e rft (4.39) 1 0
re (4.40) 1 0

Backward difference rd (4.39) 0 1
P et (4.40) 0 1

ol = @—a) () (@) —Kij,
L], =a i@ ;).

For theright interval f (1) =0, weset f(X;+1) =0 and obtain
ri]; =-b i@ ;O
[r§];; =—(@=b) (0 ;(O—Ki,

[r[l]ij =0.

(4.39b)

(4.39¢)

(4.409)
(4.40b)
(4.400)

Using (4.39) and (4.40) we define various stencilsin Table I X (the superscript notation |
is used to denote the left boundary and r the right). Together with the stencilsin Table VI,

we may construct backward and forward difference matrices

b
Iob
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which verifi
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5. REPRESENTATION OF THE EXPONENTIAL OPERATORS
IN MULTIWAVELET BASES

We can significantly improve properties of time-evolution schemes for advection—
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5.1. Periodic Boundary Conditions

In the case of periodic boundary conditions the exponential operator e 4/4%* s diagonal-
ized in the Fourier basis. Although the derivation in this section uses the Legendre scaling
functions, the results are valid for the interpolating scaling functions as well.

Let usexpand u(x, ) intoitsFourier series,

u(x, )=e )=S0 (e v, (5.5)
z

wherethe coefficientsaregivenby G ( ) =e~ @ Y0 andl = folu(x)e‘i2 Xdx. Using
the Legendre expansion on VX,

1k—1
u) = > sh ), (5.6)
I=0 j=0
we can express the Fourier coefficients i as
—1k-1 277(1+1) —1k-1
ZZ / " (x)e "2 de—iZZs;‘, j2 /N)ez VN,
I=0 j=0 2 1=0 j=0

(67

where N =2,
Next, we expand u(x, ) intheLegendre basis,

—1k—1
Z Z 700, (58)
1=0j=0

and use the Fourier series (5.5) to obtain the Legendre coefficients

27(1 +Ha
f-xee
oz






ADAPTIVE SOLUTION IN MULTIWAVELET BASES 177

where

L, )=@ e TN IN),
(5.17)

200, )= Y Ti(/N)T(/N).

The sumsin (5.16) can be computed using the FFT. This result shows that the boundary
conditions do not present a difficulty for multiwavel ets. The nonstandard form of the expo-
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TABLE X

C ypariy y TEgp 41 Matric 8C 1; t4UQg t1F ‘rrM tetaglegs

Scallg, a i‘. Sq arlg, M ¥y
(

Number of subintervals

Order (k) 4 8 16 32 64
2 2.1x107 4.9% 1072 1.7 % 1072 45%1072 1.1x 1073
4 7.6%x 1073 3.2x10™* 2.2%x10°° 1.4x 107 9.0x 1078
6 1.6x<10™ 2.2x10°® 4.0% 1078 6.4x 1071 3.6x107%
8 3.7x10°° 1.3x10°8 1.1x 1071 1.1x104 g6 TDfli5 0 TB@]’]O
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By using the semigroup approach, we obtain the solution at each time step as a result
of matrix—vector multiplication and pointwise multiplication of functions. If operators and
functions have a sparse representation (as in the multiwavel et basis), then these operations
may be performed in a fast manner, at a cost proportional to the number of significant
coefficients. We thus obtain an adaptive algorithm.

In the following examples, we construct the discrete, second-derivative operator D, =
(D¢ Dy + DI D¢)/2 asdescribed in Section 4.3.4. We construct matrix exponentials using
the scaling and squaring method described in Section 5.3.

6.1. The Heat Equation

We begin with thissimplelinear examplein order to illustrate severa pointsand provide
abridge to the nonlinear problems below. For the heat equation, the nonlinear term A/ =0,
the solution (2.10) may be written as

u(x, t) = e“ug(x), (6.4)

where £ =0y (a(x)dy). The solution u(x, t) is computed by discretizing the time interval
[0, 1] into N; subintervals of length t = 1/N¢, and by repeatedly computing

Ut =e UG, (65)

for j=0,1,2,..., Ny — 1, where U (tp) = U (0) isthe discretization of theinitial condition
asdescribed in Section 3.3. The numerical method described isexplicit and unconditionally
stable, sincetheeigenvaluesof e '* arelessthan 1. Theoperatore '* remainssparsefor any
t > 0, and therefore, we could have computed u(x, t) directly. In this example arelatively
small time step is selected in preparation for the incorporation of the nonlinear term.

ExamMpPLE 1. Let usconsider (6.1) with a(x) =1, and theinitial condition
Uo(x) = sin( x), (6.6)

ontheunittimeinterval, and choosethetimestep t =107, Interpolating scaling functions
of order k =6 were used on eight equal intervals to discretize the problem. The exponen-
tial operator was computed using the methods described in Section 5.3, with coefficients
truncated at athreshold of =107. In Fig. 1 we show the projection of the solution on V¥
for various time steps, and we note that the relative L2 error (computed using 100 equally
speaced points) never exceeded =1.6 x 107, See asimilar behavior of this type of solver
for periodic boundary conditionsin [7].

ExAamMPLE2. InFig. 2weillustrate our method for the computation of exponentialswith
variab
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1~
s N :
-
T 1
]
. ‘
|
1 _ ) -
] |
=
»’ . N 1

FIG. 1. Thesolutionin Example 1 for various time steps.

multiwavelets. The cost of the algorithm which we describe is proportional to the number
of nonzero coefficients in this representation. We thus obtain an adaptive method, where
the cost of each new time step is proportional to the number of significant coefficients at
that time step.

e

FIG. 2. Thesolutionin Example 2 at various time steps.
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the accuracy of our approach by comparing the approximate wavelet solution U, (X, t) at
some timet, with the exact solution Ug(x, t) using the relative L2 error
Uy —U
Ef)= —» ¢ 2 (6.14)
Uw 2
where the exact solution Ug(x, t) is derived by the Cole-Hopf transformation (see, for
example, [23]).
Let us summarize an algorithm for the adaptive computation of Burgers' equation using
multiwavelets. We provide this description to illustrate the practical implementation of the
adaptive selection of basis functions.

Initialization.

« Construct the derivative operator D as described in Section 4 and compute its nonstan-
dardform asdescribed in Section 3.3. Next, construct the symmetric second-derivative oper-
ator D5 (seeRemark 4.2), and the nonstandard formsof exponential operatorsQj( t£), j =
0,1,..., M + 1, using the modified scaling and squaring method (see Section 5.3 and [8]).

« Discretizetheinitial condition U (to) = ug(x) on VK and computeitswavelet transform,
truncating coefficients below an accuracy , as described in Section 3.3.2.

Evaluation. For each time step t;, do the following:
« Performthe predictor stepin (6.11) by computing the derivativesUy (ti—,) =x2 Tm(x z(/F2¢
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FIG. 3. The solutionin Example 4 for various time steps.

ExAMPLE4. Inthisexamplewecomputethesolutionto Burgers' equation using theini-
tial condition (6.6) with = 1073, onthe unit timeinterval, where t=1073. Thesmallest
interval in the discretization was x =1/1024=10"%,s0 x = t (on thefinest scale).
Interpolating scaling functions of order k = 6 were used, and operators were computed us-
ing the methods described in Sections 4 and 5.3, with coefficients truncated at a threshold
of = 107°. Thethreshold for theimplicit iterationwassetat = /10. In Fig. 3 we show
the projection of the solution on VX at various time steps, and Fig. 4 illustrates the error,
while Fig. 5 gives the number of significant coefficients per time step. We note that the
maximum error was 5.1 % 107, and that the number of operations needed to update the
solution is proportional to the number of significant coefficients.

ExAaMPLES. Wenow computethesolution of Burgers' equationwiththeinitial condition
_ 1.
u(x) =sin( x)+ > sin(2 x) (6.15)

and =1072, on the unit time interval, where t=10"*. The solution to this equation

. . TABLE XI
R\ rEga o' ByitgAcc racy Tyr g Ve=2""k"1/2 ¢
SIS TS
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. . TABLEXII
RAAMY rE o 3 yity Acc racY Tyr W Me=27"¢"12 trn=1,2,3,a 34,
! T os « N pf e 3 R v
€ rVarl' (Va' \‘fk,a.I‘AUﬁL‘ aF ' rt4-Orl rScy 11'4T11

k t m Nc L, error
4 8.8x107? U2
7.8x1073 1072 4 40 9.0%x1073
6.9x10™ 1072 6 56 6.8x 10
6.1x10°° 1072 7 72 1.5x%10™
6 2.2x107? 1072 2 36 1.7x107?
49x10* 1072 5 72 5.4x10*
1.1x10°°5 1072 6 84 1.5x%107°
2.4x 1077 1073 7 144 6.2x 1077
8 55x 1073 1072 2 48 6.4x 1073
3.1x10°° 1072 5 96 49x%10°°
1.7%x1077 1073 6 112 2.5% 1077
9.3x 107 1073 7 224 1.8x107°
10 1.4x10°3 102 3 80 3.3%x1078
1.9x 1076 102 5 120 2.6x107°
2.6x107° 103 6 140 3.4x%107°
3.6x107%2 1074 7 300 8.9 1071b
12 35x%x10™ 1072 3 96 3.7%x10*
1.2x 1078 1073 5 144 8.0x 1078
41x 1074 103 6 192 1.3x107%

@ Unstable dueto large .
® Accuracy beyond =107*° cannot be obtained using double-precision arithmetic since the com-
putation involves matrices with a condition number as large as 10°.

FIG. 4. Theerrorin Example 4 for various time steps.
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FIG.7. Theerrorin Example5 for various time steps.

and Fig. 8 shows the number of significant coefficients per time step. The maximum error
was 3.0 1076,

EXAMPLE 6. In this example we recompute Example 4 with =10"%
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includepictures. Inthiscase, the maximum error was2.5 < 10
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