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and references therein) but the technique limits the results to a few partic-
ular orders and degrees. An attempt to construct grids invariant under the
icosahedral group may be found in [23, 22] (with some negative weights in
the early construction). We also refer to [7, 42] for a review and further
references.

In this paper we develop a systematic numerical approach for construct-
ing nearly optimal quadratures invariant under the icosahe
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As a replacement for spherical harmonics, such “cubed sphere” represen-
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computed and some implementations of the DVR method [17] use quadra-
tures developed by Lebedev [26, 27]. Our quadratures should extend such
methods by allowing effectively an arbitrary order and degree.

We start by reviewing necessary mathematics, outline a general method
for constructing nodes invariant under the icosahedral group and illustrate
resulting quadratures through several examples. Based on these new quadra-
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The spherical harmonics Y m
n are linearly independent and, hence, the di-

mension of Hn is 2n + 1. The subspace of maximum degree N is then the
direct sum

(2.5) PN =

N
⊕

n=0

Hn = span {Y m
n (θ, φ) , |m| ≤ n, 0 ≤ n ≤ N}

and has dimension (N + 1)2. We make use of the addition theorem (see e.g.
[13]), which states that for ω, ω′ ∈ S

2

(2.6)
2n + 1

4π
Pn

(

ω · ω′
)

=

n
∑

m=−n

Y m
n (ω) Y ∗m

n

(

ω′
)

,

where Pn is the Legendreo N
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where ⌊ ⌋ denotes the integer part2.

This result may also be obtained using a theorem of Molien (circa 1897)
[33]. In his approach the number of invariants for a finite group may be
obtained as coefficients of a generating function. In our case we have (see
[32])

Theorem 2.3. For a given degree n, the number of functions invariant

under the icosahedral rotation group in a subspace of spherical harmonics

Hn is given by coefficients S(n) of the series expansion of the generating

function,

1 + t15

(1 − t6)(1 − t10)
=

∞
∑

n=0

S(n)tn.

It is not difficult to see that both Theorems 2.2 and 2.3 yield the same
result. We use theorems of this section to determine the number of equa-
tions contributed by each subspace Hn to the nonlinear system of equations
determining the quadrature nodes and weights.

3. Quadratures for the sphere

The main difficulty in constructing quadratures comes from the need to
solve a large system of nonlinear equations. Without using special structure
of these equations, general root finding or optimization methods typically
fail. The essence of our approach is to develop and use such structure within
a root finding method.

We start by noting four different types of orbits of the icosahedral rotation
group. In general, with three exceptions described below, a point on the
sphere under the action of the group generates a total of 60
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where {θv
i , φv

i }12
i=1 are coordinates of the vertices of an icosahedron inscribed

in the unit sphere, wv their associated weight, Ng is the number of generators

with coordinates
{

θ(j), φ(j)
}Ng

j=1
and weights {wj}Ng

j=1. For each gi ∈ G, we

denote
(

θ
(j)
i , φ

(j)
i

)

=
(

g−1
i θ(j), g−1

i φ(j)
)
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For this quadrature we have 3Ng + 3 unknown generator coordinates and
weights, with the total of 60Ng + 62 nodes.

Using Theorem 2.2 or 2.3, we determine the number of invariant functions
in the subspace Hn. Theorem 2.1 allows us to limit the number of equations
to not exceed the number of invariant functions. Ideally, when constructing a
system of equations for the generator coordinates and weights, we would like
to match the number of equations to the number of unknowns. For example,
to construct a quadrature that integrates exactly the subspace P23, we must
integrate the 10 invariant functions in P23. Therefore, we have 10 equations
and, using quadrature (3.1), we have 3Ng + 1 unknowns, where Ng is the
number of generators. Setting 3Ng + 1 = 10 gives Ng = 3 and, thus, we look
for a quadrature with 192 = 3 × 60 + 12 nodes. We solve the corresponding
system (see Section 3.2) and obtain a solution, thus verifying its existence
directly. We illustrate a set of 7212 nodes that exactly integrates P145 in
Figure 3.2. This set of nodes was found using the quadrature Qv in (3.1).

However, it appears that in some cases so constructed system of equations
may not have a solution. Our conclusion is based on the behavior of New-
ton’s iteration and, so far, has not been verified analytically. In such cases,
we reduce the number of equations by removing those from the subspace of
the highest degree and solve a formally under determined system. We note
that in this situation Newton’s iteration may not converge quadratically and



PROC. R. SOC. A 465, 3103-3125, 2009 10



PROC. R. SOC. A 465, 3103-3125, 2009 11

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++



PROC. R. SOC. A 465, 3103-3125, 2009 12

the case since any missing invariant functions would have been discovered
during a posteriori verification of quadratures.

Recall that Newton’s method for solving the system of nonlinear equations
F
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Figure 3.2. Positions of 7212 quadrature nodes of a quad-
rature integrating exactly all spherical harmonics in the sub-
space of maximal order and degree 145. This quadrature has
efficiency η = 0.98521....

uniquely determine the number and type of generators for which the triangle
P0P1P2 serves as a template. Thus, t and s uniquely determine the total
number of unknown parameters in the nonlinear system (3.7). We illustrate
this construction in Figure 3.3.

The center of the triangle P0P1P2 is at the point

Pc = (t − s)/3 e1 + (t + 2s)/3 e2 =
(

t/2, (t + 2s)/(2
√

3)
)

,

which may or may not be a point of the lattice. If the center coincides with
a lattice point, then the type of quadrature is one with a face-centered node.
In the same manner, for some choices of parameters t and s
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Figure 3.3. A grid template on a face of the icosahedron.
Here there are 9 generators with orbits of length 60 and 1 node
at the face center with orbit length 20, yielding 28 nodes in
the interior of the triangle and 572 total nodes on the sphere.
The resulting quadrature found using Newton’s method inte-
grates the subspace of maximum order and degree N = 40.
One of the possible 3 fundamental region is shown shaded.
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to position the generators onto the sphere, we first map the points from the
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on this further below and note that an attempt to use the same number of
functions K (ω · ωj) as the dimension of PN leads to ill-conditioned systems
[38, 10].

Let us now consider f ∈ PN and evaluate (4.1) at the quadrature nodes

{ωi}M
i=1. We obtain

√
wif (ω
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5. Algorithms associated with icosahedral grids

For efficient use of the quadratures developed in this paper, we need fast
algorithms for evaluation of sums on these grids. Currently we only have
O
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in [21] is the standard quadrature with O (N) Gauss-Legendre nodes in the
polar direction (and thus Nplanes ∼ N) and O (N) equally spaced nodes
in the azimuthal direction. Using the Fast Fourier transform to evaluate
along the azimuthal direction and FMM to evaluate in the polar direction
yields the overall complexity of O

(

N2 log N
)

. Unfortunately, in our case the

number of planes Nplanes ∼
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If we were to measure the decay of a function on the sphere using variance
defined as

(6.1) Var (f) ≡
´

S2 ‖ξ − 〈ξ〉‖2 f (ξ)2 dΩ
´

S2 f (ξ)2 dΩ
,

where the mean is defined as

(6.2) 〈ξ〉 ≡
´

S2 ξ f (ξ)2 dΩ
´

S2 f (ξ)2 dΩ
,

then we can show that for large N the variance of the kernel K decays only
as O (1/N).

To improve localization of the kernel, let us consider

(6.3) K̃
(

ω · ω′
)

= K
(

ω · ω′
)

+

pN
∑

n=N+1

2n + 1

4π
anPn

(

ω · ω′
)

,

where p is the over-sampling factor and the coefficients an are chosen to
improve localization. Substituting (6.3) into (6.1) and minimizing the re-
sult with respect to an, we find that the resulting coefficients an decrease
linearly with a particular (optimal) slope. Using these optimal coefficients,

we achieve Var
(

K̃
)

∼ O
(

1/ (pN)2
)

. Since the total number of nodes is

also proportional to N2, this indicates that for a given node the number
of neighbors needed to be taken into account to achieve a given accuracy
remains constant as N becomes large.

We now show that K̃ may be used as a projector onto PN . For fixed ω,
we have K̃ ∈ PpN , while K̃ − K 6∈ PN . Thus, we obtain

K
(

ω · ω′
)

=

ˆ

S2

K̃ (ω · ν) K
(

ν · ω′
)

dν.

Now for f ∈ PN , we write

f (ω) =

ˆ

S2

K
(

ω · ω′
)

f
(

ω′
)

dω′

resulting in
ˆ

S2

K̃ (ω · ν) f (ν) dν =

ˆ

S2

ˆ

S2

K̃ (ω · ν) K
(

ν · ω′
)

f
(

ω′
)

dω′dν

=

ˆ

S2

K
(

ω · ω′
)

f
(

ω′
)

dω′

= f (ω) ,

so that K̃ is a projector onto PN . One of the benefits of using K̃ over K is
that we may consider fast algorithms exploiting the local nature of K̃. We
leave it as a subject for future research.



PROC. R. SOC. A 465, 3103-3125, 2009 20

7.



PROC. R. SOC. A 465, 3103-3125, 2009 21

[10] N. Fernandez. Localized polynomial bases on the sphere. Electronic Transactions on
Numerical Analysis, 19:84–93, 2005.

[11] N. Fernandez and J. Prestin. Interpolatory band-limited wavelet bases on the sphere.
Constructive Approximation, 23(1):79–101, 2005.

[12] W. Freeden, T. Gervens, and M. Schreiner. Constructive Approximation on the Sphere
with Applications to Geomathematics. Oxford University Press, 1998.

[13] I.S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series, and Products. Academic
Press, 5th edition, 1994.

[14] L.C. Grove and C.T. Benson. Finite Reflection Groups. Springer-Verlag, 1985.
[15] F. Guilloux, G. Faÿ, and J. Cardoso. Practical wavelet design on the sphere. Appl.

Comput. Harmon. Anal., 26(2):143–160, 2009.
[16] R. H. Hardin, N. J. A. Sloane, and W. D. Smith. Tables of spher-

ical codes with icosahedral symmetry. Published electronically at
http://www.research.att.com/ njas/icosahedral.codes/, 2000.

[17] D. J. Haxton. Lebedev discrete variable representation. Journal of Physics B: Atomic,
Molecular and Optical Physics, 40:4443–4451, 2007.

[18] W.A. Heiskanen and H. Moritz. Physical Geodesy





PROC. R. SOC. A 465, 3103-3125, 2009 23

where Cm
n is a normalization constant. We now compute the partial deriva-

tives of (8.1) with respect to θ and φ. We obtain

∂
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Coordinates of vertices of an icosahedron. We set α =
(

1 −

√

5
)

/2
and list the Cartesian coordinates of the vertices of an icosahedron inscribed

into the unit sphere.

Vertex Coordinate

v1 (0, α, 1)/
√

1 + α2

v2 (0, α,−1)/
√

1 + α2

v3 (1, 0, α)/
√

1 + α2

v4 (1, 0,−α)/
√

1 + α2

v5 (α, 1, 0)/
√

1 + α2

v6 (α,−1, 0)/
√

1 + α2

vi+6 −vi, i = 1 . . . 6

Table 1. Cartesian coordinates of an icosahedron. Here α =
(

1 −

√

5
)

/2.

Elements of the icosahedral rotation group as quaternions. The ac-

tion of an element from the icosahedral rotation group may be represented

using quaternions. Here we list a quaternionic representation of the icosahe-

dral rotation group.
1



ROTATIONALLY INVARIANT QUADRATURES FOR THE SPHERE 2

q1 = −
1

2
− i1

2
+ j1

2
− k1

2
q21 = i q41 = −β + i1

2
+ kγ

q2 = −
1

2
− i1

2
+ j1

2
+ k1

2
q22 = −iβ − j1

2
− kγ q42 = −β + i1

2
− kγ

q3 = −
1

2
− jβ + kγ q23 = −iβ + j1

2
+ kγ q43 = −β + iγ − j1

2

q4 = −
1

2
+ jβ + kγ q24 = −iβ + j1

2
− kγ q44 = −β + iγ + j1

2

q5 = −
1

2
+ i1

2
− j1

2
− k1

2
q25 = iγ − jβ − k1

2
q45 = −β − iγ − j1

2

q6 = −
1

2
+ i1

2
− j1

2
+ k1

2
q26 = iγ − jβ + k1

2
q46 = −β − iγ + j1

2

q7 = −
1

2
− iβ + jγ q27 = iγ + jβ + k1

2
q47 = γ −


