A B f D C BM C N S G B B P M J G. R , Y L , Member, IEEE, T ABX B

II. System Model

The Man Are the State of the BS BB Are the BS BB BB BB BB BB BB

A. BS Layout

The H N fK - L - L - R^2 - R

B. Radio Environment and Downlink SINR

$$SINR_{ki} = \frac{P_{ok}\Psi_{oki}R_{oki}^{-\varepsilon_{ok}}}{I_o - P_{ok}\Psi_{oki}R_{oki}^{-\varepsilon_{ok}} + I_c + \eta},$$
 (1)

()
$$R_{ol1} \stackrel{K}{\underset{l=1}{\overset{K}{\longrightarrow}}}$$

Tier 1 SIR threhold (in dB)

f C ,
$$f \in \mathbb{R}$$
 [32], $f \in \mathbb{R}$ - $f \in \mathbb{R}$ $f \in \mathbb{$

$$I_{o} + I_{c} + \eta < \prod_{i=1,\dots,K} \gamma_{i} M_{i} = \frac{1}{\kappa} \times \prod_{i=1,\dots,K} \gamma_{i} M_{i} + \eta < I_{o} + I_{c} + \eta < \prod_{i=1,\dots,K} \gamma_{i} M_{i}$$

$$I_{o} + I_{c} + \eta < \prod_{i=1,\dots,K} \gamma_{i} M_{i}$$

$$I_{o} + I_{c} + \eta = \frac{i=1,\dots,K}{\kappa} \gamma_{i} M_{i}$$

$$I_{o} + I_{c} + \eta = \frac{i=1,\dots,K}{\kappa} \gamma_{i} M_{i}$$

$$I_{o} + I_{c} + \eta = \frac{i=1,\dots,K}{\kappa} \gamma_{i} M_{i}$$

B. Proof for Lemma 1

C. Proof for Lemma 2

The H N SINR MIRP f f F
$$m = 1, \dots, K, c$$
 (f $m = 1, \dots, K$)

