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Abstract—In this paper, a comprehensive study of the down-
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reception parameters. Different tiers may have different densi-
ties and radio parameters. Results on this model can be distin-
guished along two dimensions. The first is the algorithm used
to select which BS a mobile station (MS) connects. Different
connectivity models will be defined later and include max-
SINR, nearest BS, maximum biased received power (MBRP),
and maximum instantaneous received power (MIRP). A second
dimension is which of the radio parameters are allowed to vary
between tiers.

The tiers can be further classified as open-access or closed-
access [3], [26], [25], [31]. Open-access tiers consist of ordi-
nary BSs to which any MS can connect. Closed-access tiers
represent private femtocells, unlicensed devices, and other
interference sources. Whether they consist of actual BSs or not,
closed-access tiers model interfering radios that do not provide
service to the MS we wish to study. The open and closed-access
tiers enable many flexible HetNet models to be developed. A
simple model might consist of two tiers. One open-access tier
consists of tall long-range macrocell BS towers with appropri-
ate radio parameters. A second closed-access tier consists of
low-power indoor femtocells with corresponding radio param-
eters. A more complex model might segregate BSs into many
finely distinguished tiers to represent different types of operator
equipment and interference sources.

The max-SINR connectivity model where the fading factors
are exponentially distributed and the path-loss exponents are the
same for all tiers was considered in [26], [27]. Using an entirely
different approach, [22]–[24] derives the coverage probability
for the HetNet with max-SINR and nearest BS connectivity
models, and exponentially distributed fading factors. In [30],
the authors study the HetNet coverage probability for MBRP
connectivity, and, again, for the exponentially distributed fad-
ing. In [1]–[3], we studied the HetNet coverage probability and
stochastic ordering results for MIRP connectivity in the case
when the fading factors have an arbitrary distribution and each
tier’s path-loss exponent may differ.

In this paper we consider nearest-BS and max-SINR con-
nectivity models as a natural extension of our earlier results to
popular connectivity models. We derive the coverage probabil-
ities when each tier has arbitrary transmit power, fading factor
distribution, path loss exponent, and receiver SINR threshold.
The result is a relatively complex semi-analytic expression.
This is found to be useful in several ways. First we are able
to make a qualitative study of performance using results from
stochastic ordering. We show that MBRP and MIRP connec-
tivity models are a special case of nearest-BS and max-SINR
connectivity models, respectively. We also derive a reduced
canonical form for the HetNets that can, in some cases, sim-
plify the HetNet to an equivalent network with one or a few
tiers. When the SINR thresholds of all the tiers are above 1, we
show the HetNet coverage probability under max-SINR con-
nectivity and MIRP connectivity are identical, and nearest-BS
connectivity and the MBRP connectivity are identical. Further,
in these special cases, simple and novel analytical expression
are derived for the coverage probability, average rate and the
load carried by the BSs of each tier. Finally, the semi-analytic
expression is used to study a specific two-tier example. We start
with the system model.

II. SYSTEM MODEL

This section describes the various elements used to model the
wireless network: the BS layout, the radio environment, and the
role of the BS connectivity model.

A. BS Layout

The HetNet is composed of K open-access and L closed-
access tiers. The BS layout in each tier is according to an
independent homogeneous Poisson point process in R

2 with
density λok , λcl for the kth open-access tier and l th closed-access
tier, respectively, where k = 1, . . . , K and l = 1, . . . , L . The
MS is allowed to communicate with any BS of the open-access
tiers, but cannot communicate with any of the closed-access
BSs. We assume the MS location is independent of the BS loca-
tions. Since the BS densities are homogeneous, without loss of
generality, the MS is placed at the origin.

B. Radio Environment and Downlink SINR

The signal transmitted from each BS undergoes fading and
path-loss. At this point we do not concern ourselves whether
the fading is fast fading or slow (shadow) fading and refer to
it as a generic fading factor. The SINR at an arbitrary MS in
the system from the i th BS of the kth open-access tier is the
ratio of the received power from this BS to the sum of the inter-
ferences from all the other BSs in the system and the constant
background noise η, and is expressed as

SINRki = Pok�oki R−εok
oki

Io − Pok�oki R−εok
oki + Ic + η

, (1)

where subscripts ‘o’ and ‘c’ indicate open-access and closed-
access tiers, respectively, Io = ∑K

m=1
∑∞

n=1 Pom�omn R−εom
omn

is the sum of the received powers from all the open-access
tier BSs; {Pom, �omn, εom, Romn}m=K , n=∞

m=1, n=1 are the constant
transmit power, random fading factor, constant path-loss expo-
nent, and the distance from the MS to the nth nearest BS of
the mth open-access tier; Ic = ∑L

l=1
∑∞

n=1 Pcl�cln R−εcl
cln is the
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(b) is obtained by noting that
{
R̃ol1

}K
l=1
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direct consequence of Campbell’s theorem [32], e−sη is a con-

stant and

{
max

k=1,··· ,K
γk Mk ≤ u

}
⇐⇒

{
γk Pok�okl RR
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where (a) is obtained by noting that{
Io + Ic + η < max

i=1,··· ,K
γi Mi

}
={

1

κ
× max

i=1,··· ,K
γi Mi + η < Io + Ic + η < max

i=1,··· ,K
γi Mi

}
⋃{{

Io + Ic + η < max
i=1,··· ,K

γi Mi

}⋂
⎧⎨
⎩Io + Ic + η ≤

max
i=1,··· ,K

γi Mi

κ
+ η

⎫⎬
⎭
⎫⎬
⎭ ,

and the second set in the union of two sets shown above is a null
set, (b) expresses the probability of the coverage event in terms
of the joint p.d.f., (c) is obtained by substituting for the joint
p.d.f. from (27), then interchanging the order of integrations
of the variables x and ω which is justified by the boundedness
of the integrals. Finally, the above expression can be further
simplified to obtain (4).

The same steps can be followed for obtaining (5), and are
omitted for brevity.

B. Proof for Lemma 1

Given a BS belonging to the kth open-access tier is at a
distance R from the origin, then, due to [2, Theorem 2],
R̃ = (Pok�ok)

−1 Rεok represents the distance of the BS from
the origin where the BS arrangement is according to a non-
homogeneous 1-D Poisson point process with BS density

function λ̃ok (r), as long as E

[
�

2
εok
ok

]
< ∞, for each k =

1, 2, · · · , K . Similarly, for the closed-access tier, R̂ =
(Pc�c)

−1 Rεc is the distance where the BS arrangement is
according to a non-homogeneous 1-D Poisson point process

with BS density function λ̂ (r), as long as E

[
�

2
εc
c

]
< ∞. This

is a consequence of the Mapping theorem [32, Page 18] and
the Marking Theorem [32, Page 55] of the Poisson processes.
Further, since the BS arrangements in the different tiers were
originally independent of each other, the set of all the BSs in
the equivalent 1-D non-homogeneous Poisson process is merely
the union of all R̃′s in all tiers. By the Superposition Theorem
[32, Page 16] of Poisson processes, the combined process is a
non-homogeneous Poisson point process with density function
λ̃ (r) = ∑K

k=1 λ̃ok (r) , r ≥ 0.

In summary, we have converted the BS arrangement on a 2-
D plane of a HetNet to a BS arrangement of the equivalent 2-
tier network along 1-D (positive x-axis), and hence, the SINR
distributions of both these networks are also equivalent. Further,
by our construction, the MIRP BS in the HetNet corresponds to
the BS that is nearest to the origin (MS) in the equivalent 2-tier
network. As a result, SINR may be written in terms of the R̃’s
and R̂’s indexed in the ascending order, and we get (10).

C. Proof for Lemma 2

The HetNet SINR under MIRP can be computed as follows.
For each tier m = 1, · · · , K , c (c refers to the closed-access

tier), form the set

{(
Pom�om,l

)− 1
ε Rom,l

}∞

l=1
and represent as{

R̄m,l
}∞

l=1 where R̄’s are ascendingly ordered. Now,
{

R̄−ε
m,l

}∞
l=1

represents the received powers of all the mth tier BSs in the
descending order. Finally, the desired BS’s power and tier index
(T ) can be easily found by identifying the maximum in the

set
{

R̄−ε
m,1

}K

m=1
and the SINR can be computed. Using [19,

Corollary 3] which is an application n-homogenTD
(,)Tj1,511 1.3u4T93D2 ing T93D21,511 1.m
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