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separated multiresolution representation for a class of convolution operators. These estimates provide the analytic
foundation for accuracy control within the framework of separated representations of operators in high dimensions.

The kernels of operators of this class are non-oscillatory and include weakly singular and singular operators
which are ubiquitous in problems of physics. The Poisson kernel and the projector on the divergence free func-
tions provide two important examples with a wide range of applications in computational chemistry, computational
electro-magnetics and fluid dynamics. However, these operators are rarely used directly for computing. For example,
one typically solves the Poisson equation in the differential form as a step in solving the Navier–Stokes equations
rather than apply the projector on ds
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Fig. 1. Error (log10) of approximating the Poisson kernel using Proposition 1 with consequent optimization, where ε ≈ 10−8, 10−9 � ‖x‖ � 1 and
M = 89.

with

M = log ε−1[c0 + c1 log ε−1 + c2 log δ−1], (2)

where ck are constants that only depend on α. For fixed power α and accuracy ε, we have M = O(log δ−1).

For singular operators, we will need a different measure of error in such approximations. Let us select ε = ε0δα−2

in Proposition 1 and arrive at

Proposition 2. For any α > 0, 0 < δ � 1, and 0 < ε � min
{ 1

2 , 8
α

}
, there exist positive numbers pm and wm such that∣∣∣∣∣r−α −

M∑
m=1

wme−pmr2

∣∣∣∣∣ � ε0r−2 for all δ � r � 1, (3)

where

M = log ε−1[c0 + c1 log ε−1 + c2 log δ−1]. (4)
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Fig. 2. Error (log10) of approximating 1/‖x‖3 using Proposition 2 with consequent optimization, where ε ≈ 10−8, 10−7 � ‖x‖ � 1 and M = 110.

by the trapezoidal rule, namely, setting pm = e2sm and wm = 2�seαsm/ �(α/2), where sm = s0 + (m − 1)�s, m =
1, . . . ,M . For a given accuracy ε and range 0 < δ � r � 1, we select s0 and sM = s0 + (M − 1)�s, the end points of
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Fig. 3. The first four cross-correlation functions Φ00,Φ01,Φ10, and Φ11.

Φii′(x) =

⎧⎪⎨
⎪⎩

Φ+
ii′(x), 0 � x � 1,

Φ−
ii′(x), −1 � x < 0,

0, 1 < |x|,
(8)

where i, i′ = 0, . . . ,m − 1 and

Φ+
ii′(x) =

1−x∫
0

φi(x + y)φi′(y) dy, Φ−
ii′(x) =

1∫
−x

φi(x + y)φi′(y) dy. (9)

The first four cross-correlation functions are illustrated in Fig. 3.
We summarize relevant properties of the cross-correlation functions Φii′ in

Proposition 3. (1) Transposition of indices: Φii′(x) = (−1)i+i′
Φi′i (x).

(2) Relations between Φ+and Φ−: Φ−
i,i′(−x) = (−1)i+i′

Φ+
i,i′(x) for 0 � x � 1.

(3) Values at zero: Φii′(0) = 0 for i 	= i′, and Φii(0) = 1 for i = 0, . . . ,m − 1.
(4) Upper bound: maxx∈[−1,1] |Φii′(x)| � 1 for i, i′ = 0, . . . ,m − 1.

(5) Connection with the Gegenbauer polynomials: Φ+
00(x) = 1

2 C
(−1/2)

1 (2x − 1) + 1
2 and Φ+

i0(x) = 1
2

√
2i + 1 ×

C
(−1/2)

i+1 (2x − 1) for i = 1, 2, . . . , where C
(−1/2)

i+1 are the Gegenbauer polynomials.
(6)
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where b = √
3 + ‖l‖,

F
m,l
ii′ =

1∫
−1

e−pm(xm
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and

G
m,l
ii′ = 2pm

b2

1∫
−1

e−pm(x+l)2/b2
(x + l)2Φii′(x) dx − F

m,l
ii′ . (36)

(2) If l = 0 and i = i′, j = j ′, and k
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If l = 0 and i = i′, j = j ′, and k = k′, then for the off-diagonal terms we have

t
0,12
iijjkk = 1

4π

∫
B

3x1x2

‖x‖5
Φii(x1)Φjj (x2)Φkk(x3) dx = 0, (55)

as the conditional limit of corresponding integrals for all i, j, k.
(4) If maxi |li | � 2, then minx∈B ‖x + l‖ = 1 and the integral in (30) has no singularities. The estimate (44) is then

obtained by using (49),∣∣t l,qq ′
ii′jj ′kk′ − r

l,qq ′
ii′jj ′kk′

∣∣ � ε

4πb

∫
B

dx
‖x + l‖2

� ε

4π
√

3

∫
‖x‖�

√
3

dx
‖x‖2

= ε. (56)

If maxi |li | � 1, we split the domain of integration for t
l,qq ′
ii′jj ′kk′ into the neighborhood around the singularity Dδ =

{x: ‖x + l‖ � δ} and the rest of the domain, B \ Dδ . The estimate for the integral over B \ Dδ is the same as in (56).
We need, however, to estimate the integrals over Dδ for both the kernel and its approximation. Using |Φii′ | � 1 and
|Φ ′

ii′ | � C̃ for some constant C̃ (except at zero), and changing variables to y = x + l, we have for the diagonal term
with q = q ′ = 1,∣∣∣∣∣ 1

4π

∫
Dδ

x1 + l
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using asymptotic expansions and, as a result, obtain for them simple analytic expressions. Moreover, if we combine the
contributions of the terms with large exponents, we effectively remove the dependence on the parameter δ altogether.
In the process of accounting for the singularity in this manner, we also reduce the separation rank of the representation.
Although the separation rank i p
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�
where F
m,l
ii′ = F −l

ii′ (pm/b2). The function Φii′(x) is a polynomial on subintervals [0, 1] and [−1, 0]. Using the Taylor
expansion in [0, 1] at points l = 0, 1, we have

Φ+
ii′(x) = Φ+

ii′(l) + Φ ′+
ii′ (l)(x − l) + Φ ′′+

ii′ (l)
(x − l)2

2
+ · · · , (65)

where the one-sided derivatives are computed at the end points in directions from the interior of the interval [0, 1]
(outer derivative), and set Φ+

ii′(x) = Φ ′+
ii′ (x) = Φ ′′+

ii′ (x) = · · · = 0 for all x outside [0, 1]. Similarly, we have expansion
for Φ−

ii′(x) in [−1, 0] at points l = −1, 0,

Φ−
ii′(x) = Φ−

ii′(l) + Φ ′−
ii′ (l)(x − l) + Φ ′′−

ii′ (l)
(x − l)2

2
+ · · · , (66)

and set Φ−
ii′(x) = Φ ′−

ii′ (x) = Φ ′′−
ii′ (x) = · · · = 0 for all x outside [−1, 0].

For large p (say, p > 100), we replace e−p , erf(
√

p) and erf(−√
p) by their limits. Here erf(·) denotes the error

function,

erf(s) = 2√
π

s∫
0

e−t2
dt. (67)

Since erf(−s) = −erf(s), erf(0) = 0 and erf(
√

p) → 1 for large p, we have for l = 0, 1,

1∫
0

e−p(x−l)2
dx = √

π
[
erf(l

√
p ) − erf

(
(l − 1)

√
p

)]/
2p1/2 → √

π/2p1/2,

1∫
0

�
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with(ρ)l3 Tmρ0 Tcρ(1)Tjρ/F9 173 TTjρ/F4 1 Tfρ9.9626 0 0 9.9626 150.726 52ρ(Φ2

,51 -0.7408 TDρ(1)Tjρ/F3 1S26 1.5e879)
For the off-diagonal terms, q 	= q ′, we have

r̃
l,qq ′
ii′,jj ′,kk′ = q3

Φ ′+
ii′ (−l1) + Φ ′−

ii′ (−l1)

2

Φ ′+
jj ′ (−l2) + Φ ′−

jj ′ (−l2)

2
Φkk′(−l3) +O

(
e−3s(M0)

)
. (78)

Proof. In this case we need to estimate for large p the contribution from (36). Introducing

Gl
ii′(p) = Sl

ii′(p) − F l
ii′(p) (79)

with

Sl
ii′(p) = 2p

1∫
−1

e−p(x−l)2
(x − l)2Φii′(x) dx, (80)

we have G
m,l
ii′ = G−l

ii′ (pm/b2). Using (68) and (69), as well as

1∫
0

(x − l)3e−p(x−l)2
dx →

{
1,51 -0.7408 TDρ(1)Tjρ/F3 1S26 1.5e879)

)6Tmρ0 47ρ(2)T1Dρ0.�
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If l = 0 then the additional term is obtained from (75) by setting indices to zero and evaluating the cross-correlation
functions explicitly.

For computing the off-diagonal terms, we need to estimate for large p

T l
ii′(p) =

1∫
−1

e−p(x−l)2
(x − l)Φii′(x) dx. (87)

Using (68) and (69), and observing that Φii′(±1) = 0, we obtain for l = −1, 0, 1

T l
ii′(p) = √

π
Φ ′+

ii′ + Φ ′−
ii′

4p3
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Introducing the orthogonal projector on Vn, Pn : L2(Rd) → Vn and considering an operator T : L2(Rd) → L2(Rd),
we define its projection Tn : Vn → Vn as Tn = PnT Pn. This projection is written explicitly in (13) in dimension d = 3
for convolution operators with the kernel K(x − y).

We also consider the orthogonal projector Qn : L2(Rd) → Wn, defined as Qn = Pn+1 − Pn. The non-standard
form of the operator T is the collection of components of the telescopic expansion

Tn = (Tn − Tn−1) + (Tn−1 − Tn−2) + · · · + T0 = T0 +
n−1∑
j=0

(Aj + Bj + Cj ),

where Aj = Qj T Qj , Bj = Qj T Pj , and Cj = Pj T Qj . The main property of this telescopic expansion is that the
rate of decay of the matrix elements of operators Aj , Bj , and Cj away from the diagonal is controlled by the number
of vanishing moments of the basis and, for a finite but arbitrary accuracy ε, the matrix elements outside a certain band
can be set to zero resulting in an error of the norm less than ε. Such behavior of the matrix elements becomes clear
if we observe that the derivatives of the kernels under consideration decay faster than the kernel itself and, in our
case, the rate of decay corresponds to the number of derivatives taken. If we use the Taylor expansion of the kernel to
estimate the matrix elements away from the diagonal, then the size of these elements is controlled by a high derivative
of the kernel since the vanishing moments remove the lower order terms [1].

Applying the non-standard form to a function, we write

Tnf = T0f +
n−1∑
j=0

(
Aj (Qj f ) + Bj (Pj f ) + Cj (Qj f )

)
, (90)

where the operators Pj and Qj are inserted to indicate the necessary projections of the function f . The advantage
of the non-standard form is that it accounts for the interaction between different scales via an operator-independent
projection applied after evaluating all of the components in (90). Namely, we observe that although the components
Aj f + Cj f ∈ Wj, are a part of the multiwavelet expansion, the components Bj f ∈ Vj need to be projected on the
appropriate wavelet subspaces [1] to obtain the final result.

We note that there are several ways to implement the application of the non-standard form to functions. Using
Theorems 9 and 10, a new adaptive algorithm has been developed recently and will be described elsewhere [16].

7. Conclusions

Using the Poisson kernel and the projector on the divergence free function as examples, we have constructed sep-
arated representations of these kernels in multiwavelet bases. A similar approach is applicable to non-homogeneous
convolutions, for example kernels e−μ‖x‖/‖x‖, where μ > 0 and x ∈ R

3, used in [4] and [5]. The key to these compu-
tations are separated approximations described in Section 2.1. Our approach also reveals the structure of operators on
fine scales depicted in Theorems 9 and 10.

Appendix A

Let us provide a brief proof of properties of the cross-correlation functions in Proposition 3.

(1) Since Pi(−x) = (−1)iPi(x), we have from (6) φi(−x + 1) = (−1)iφ(x). Setting x + y = −z + 1 in (7), we
obtain

Φii′(x) =
∞∫

−∞
φi(−z + 1)φi′(−z − x + 1) dz = (−1)i+i′

∞∫
−∞

φi(z)φi′(z + x) dz.

(2) The relations between Φ+ and Φ− follow from the direct examination of (8) and (9).
(3) Since

Φ+
ii′(0) =

1∫
φi(x + y)φi′(y) dy,
0
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the values at zero are obtained using the orthonormality of the scaling functions φi .
(4) Let us obtain the upper bound for Φ+

ii′ using (9). We have

1−x∫
0

∣∣φi(x + y)
∣∣∣
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