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Abstract. We develop a multiresolution representation of a class of integral operators satisfying
boundary conditions on simple domains in order to construct fast algorithms for their application.
We also elucidate some delicate theoretical issues related to the construction of periodic Green’s
functions for Poisson’s equation.

By applying the method of images to the non-standard form of the free space operator, we
obtain lattice sums that converge absolutely on all scales, except possibly on the coarsest scale. On
the coarsest scale the lattice sums may be only conditionally convergent and, thus, allow for some
freedom in their definition. We use the limit of square partial sums as a definition of the limit and
obtain a systematic, simple approach to the construction (in any dimension) of periodized operators
with sparse non-standard forms.

We illustrate the results on several examples in dimensions one and three: the Hilbert transform,
the projector on divergence free functions, the non-oscillatory Helmholtz Green’s function and the
Poisson operator. Remarkably, the limit of square partial sums yields a periodic Poisson Green’s
function which is not a convolution.

Using a short sum of decaying Gaussians to approximate periodic Green’s functions, we arrive at
fast algorithms for their application. We further show that the results obtained for operators with
periodic boundary conditions extend to operators with Dirichlet, Neumann, or mixed boundary
conditions.

1. Introduction

The primary goal of this paper is to develop a multiresolution representation of a class of integral
operators satisfying boundary conditions on simple domains and construct fast algorithms for their
application. As a practical consequence of our approach, we show that a minor modification of the
fast algorithms for free space operators in [24, 9, 6], yields a fast algorithm (of the same complexity)
for the operator satisfying boundary conditions.

Another goal of this paper is to elucidate some delicate theoretical issues related to the method
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In our approach we apply the method of images not to the free space operator itself but to its non-
standard form. The non-standard form splits the action of the operator to an infinite set of scales
and, for appropriate classes of operators, yields a sparse representation [7]. For operators with
kernels whose partial derivatives decay faster than the kernel itself (e.g., the Calderon-Zygmund
operators), the non-standard form is sparse on all scales, except for the coarsest scale. We use the
rapid decay of the coefficients of the non-standard form to construct its periodized version and to
show that, on all scales except possibly the coarsest scale, the lattice sums converge absolutely and
require no further analysis. On the coarsest scale, for some of the coefficients, the lattice sums may
be only conditionally convergent and, thus, allow for some freedom in their definition. For such
coefficients a summation convention needs to be specified and we choose the limit of square partial
sums for that purpose. In this way, we obtain a systematic, simple approach to the construction (in
any dimension) of periodized operators with sparse non-standard forms. We illustrate the results on
several examples in dimensions one and three: the Hilbert transform, the projector on divergence
free functions (the so-called Leray projector), the non-oscillatory Helmholtz Green’s function and
the Poisson operator.
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2.1.3. Example in one dimension. Let K be the kernel of the convolution operator

(9) (Tf) (x) =

∫

R
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the entries outside the band may be discarded resulting in a representation of the operator in terms
of banded matrices and, therefore, yielding a fast algorithm for its application (see e.g. [7]).

2.2. Operators with periodic boundary conditions. Given a convolution operator T of the
form (9), the method of images is the standard approach to construct an associated operator T
satisfying a periodic boundary condition. Specifically,

(13) T f(x) =
∫ 1

0

[
∑

n∈Z
K(x− y + n)

]
f(y)dy,

where (T f) (x) = (T f) (x+1) for x ∈ [0,
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Remark 3.
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3.4. Non-oscillatory Helmholtz Green’s function with periodic boundary conditions.

Let us consider the problem
(
−∆+ µ2

)
u(x) = f(x)(30)

u(x+ n) = u(x)(31)

for x ∈ [0, 1]3, µ > 0, n ∈ Z3, and f ∈ L2([0, 1]3). Although this problem is easily handled by the
standard method of images, we apply our approach in order to show that the limit as µ → 0 does
not cover all possible constructions available for the case µ = 0.

We consider the solution to (30) and (31)

u(x) =

∫

[0,1]3
Gµ

H(x − y)f(y)dy,

where Gµ
H satisfies

(
−∆x + µ2

)
Gµ

H(x − y) = δ(x − y)

Gµ
H(x − y+ n) = Gµ

H(x − y).

We obtain Gµ
H
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See Appendix 8.6 for the proof. The formulas derived in the proof may be used to explicitly compute
other elements of the non-standard form.

4. Poisson Green’s function with periodic boundary conditions

In this section we consider the problem

−∆u(x) = f(x)(34)

u(x+ n) = u(x)(35)

for x ∈ [0, 1]3, n ∈ Z3 and f ∈ L2([0, 1]3) satisfying the mean-free condition

(36)

∫

[0,1]3
f(x)dx = 0.
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multi-indices i′ = (0, 0, 2), i′ = (2, 0, 0) and i′ = (0, 0, 2). Hence, we obtain
∫

[0,1]3
u(x)dx = − 1

36

∫

[0,1]3
f(x1, x2, x3) [P2(2x1 − 1) + P2(2x2 − 1) + P2(2x3 − 1)] dx1dx2dx3.

Expanding P2(2t − 1) = 1 − 6t+ 6t2 and using that f is mean-free, the last equation is equivalent
to

(45)

∫

[0,1]3
u(x)dx =

1

6

∫

[0,1]3
f(x1, x2, x3)

(
x1 + x2 + x3 − x21 − x22 − x23

)
dx1dx2dx3.

This last condition is also derived in the literature (but with more restrictive assumptions on the
function f). See, e.g., [5, Eq. 29], [26, Eq. 38] or [29, Eq. 8].

Further analysis of (45) leads us to consider the weak formulation of the problem (46)-(47),
∫

[0,1]3
∇u(x) · ∇ϕ(x) dx =

∫

[0,1]3
f(x)ϕ(
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where β and µ are non-negative parameters, both not simultaneously zero, and pγ is a polynomial,

γ = 1, 2, 3. We note that both, ‖x‖−β
2 and e−µ‖x‖2 , or ‖x‖−β

2 e−µ‖x‖2 , may be efficiently approxi-
mated by short sums of Gaussians for any user selected accuracy ǫ and distance from the origin δ
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As an example, let us consider the problem
(
−∆+ µ2

)
u(x) = f(x) for x ∈ D(64)

u(x) = 0 for x ∈ ∂D,(65)

where µ ≥ 0 and D = [−1/2, 1/2]3 . A solution to (64) which satisfies (65) is given by

u(x) =

∫

D
Gµ(x,y)f(y)dy,

where Gµ satisfies
(
−∆x + µ2

)
Gµ(x,y) = δ(x − y)(66)

Gµ(x,y) = 0 for x ∈ ∂D(67)

and ∆x denotes the Laplacian with respect to x. Let us first consider the case where µ > 0. Even
though the integral operator Gµ is not a convolution, it may be written as

Gµ(x,y) = Gµ
H

(
x1 − y1

2
,
x2 − y2

2
,
x3 − y3

2

)
−Gµ

H

(
x1 − y1

2
,
x2 − y2

2
,
x3 + y3 + 1

2

)

+ Gµ
H

(
x1 − y1

2
,
x2 + y2 + 1

2
,
x3 + y3 + 1

2

)
−Gµ

H

(
x1 − y1

2
,
x2 + y2 + 1

2
,
x3 − y3

2

)

+ Gµ
H

(
x1 + y1 + 1

2
,
x2 − y2

2
,
x3 + y3 + 1

2

)
−Gµ

H

(
x1 + y1 + 1

2
,
x2 − y2

2
,
x3 − y3

2

)

+ Gµ
H

(
x1 + y1 + 1

2
,
x2 + y2 + 1

2
,
x3 − y3

2

)
−Gµ

H

(
x1 + y1 + 1

2
,
x2 + y2 + 1

2
,
x3 + y3 + 1

2

)
,(68)

where the periodic Green’s function Gµ
H is constructed as in Section 3.4 to satisfy

(69)
1

2

(
−∆x + 4µ2

)
Gµ

H(x − y) = δ(x − y).

The changes in the equation relative to (66) are due to the way variables appear in (68) and to the
dimension of the space, d = 3. Since Gµ

H has period one and is even in each variable, for x ∈ ∂D
the terms in (68) cancel each other so that Gµ satisfies the Dirichlet boundary condition (67). For
x 6= y inside D, we have

(
−∆x + µ2

)
G
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8.3. Proof of Proposition 4.

Proof. It is enough to prove the result for ‖l − l′‖2 ≥ 2
√
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Hence, substituting (103) into (100) yields

(104) S+
N =

∑

|n2|≤N,|n3|≤N

∫

[0,1]3

(x1 +N)ϕ
[1]
1 (x1)ϕ2(x2)ϕ3(x3)
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and hence I
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the term corresponding to n3 = N in S+
N leads to a sequence which tends to 0 as N → ∞. Setting

n2 = N leads to a similar estimate yielding

S+
∞ = lim

N→∞
SN ,

where

SN =
N∑

n1=−N

N−1∑

n2=−N

N−
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For part (iii), by symmetry of the kernel, it is sufficient to consider only one of the elements listed
on each of the three cases. The case
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