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Abstract We describe a new method for numerical integration, dubbed bandlimited collo-
cation implicit Runge–Kutta (BLC-IRK), and compare its efficiency in propagating orbits
to existing techniques commonly used in Astrodynamics. The BLC-IRK scheme uses gen-
eralized Gaussian quadratures for bandlimited functions. This new method allows us to use
significantly fewer force function evaluations than explicit Runge–Kutta schemes. In partic-
ular, we use a low-fidelity force model for most of the iterations, thus minimizing the number
of high-fidelity force model evaluations. We also investigate the dense output capability of
the new scheme, quantifying its accuracy for Earth orbits. We demonstrate that this numerical
integration technique is faster than explicit methods of Dormand and Prince 5(4) and 8(7),
Runge–Kutta–Fehlberg 7(8), and approaches the efficiency of the 8th-order Gauss–Jackson
multistep method. We anticipate a significant acceleration of the scheme in a multiprocessor
environment.
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1 Introduction

We present a new numerical integration technique, developed by Beylkin and Sand-
berg at the University of Colorado (Beylkin and Sandberg 2014; Beylkin and Monzón
2002), and compare its performance in propagating orbits to existing techniques com-
monly used in Astrodynamics. The new scheme, dubbed the bandlimited collocation implicit
Runge–Kutta (BLC-IRK) method, is an Implicit Runge–Kutta (IRK) collocation scheme
which uses generalized Gaussian quadratures for bandlimited exponentials rather than the
classical quadratures for orthogonal polynomials. We note that IRK methods have been
constructed for a variety of polynomial based quadratures, such as Gauss–Legendre, Gauss–
Lobatto, and Chebyshev (e.g., see discussions in Jones and Anderson 2012; Iserles 2009;
Hairer et al. 2002). Among polynomial based IRK collocation schemes, only the scheme
based on Gauss–Legendre quadratures achieves the highest order of approximation, is A-
stable, and symplectic. The new BLC-IRK scheme is also A-stable and symplectic, achieves
any user-selected accuracy and, in addition, allows one to use a large number of nodes within
each time interval without the penalty of excessive node concentration near the endpoints of
the interval. The properties of BLC-IRK scheme significantly affect the approach to using it
in Astrodynamics.
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– Gauss–Jackson 8th-order (GJ 8): a multi-step predictor-corrector method of 8th-order
which uses a fixed step size (Jackson 1924; Fox 1984; Berry and Healy 2004). This
scheme has been used by US Space Surveillance Centers since the 1960’s due to its
highly efficient propagation of near-circular orbits (SPADOC Computation Center 1982;
Berry and Healy 2004).

In space surveillance and many other applications, we often have an option to sacri-
fice accuracy for reduced computation time. Thus, we desire an integration scheme which
achieves a necessary level of accuracy while minimizing the number of force model evalu-
ations and computation time required. We compare each integrator based on the number of
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Fig. 7 Comparison of RMS
position errors over a 3-orbit
GEO (a) and LEO (b)
propagation
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Fig. 10 BLC-IRK collocation
interpolation error for a GEO
propagation. BLC-IRK
propagation performed using 4
intervals/orbit and 64
nodes/interval. Interpolation is
performed every 5 seconds. Note
that the plotted error is due to
both interpolation and integration
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Fig. 11 Interpolation errors of
BLC-IRK (a) and DOPRI 8(7)
(b) trajectories using a 5th-order
Lagrange scheme. Interpolations
are performed every 5 seconds. A
relative tolerance of 10−13 was
used for step size control of the
DOPRI 8(7) propagation
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BLC-IRK is based, yield node spacing that is more efficient than traditional polynomial-
based quadrature methods such as Gauss–Legendre, Gauss–Lobatto, and Chebyshev. This
promotes the use of large time intervals and a large number of nodes per interval, reducing
the computational load near the clustered endpoints as with polynomial-based quadratures.
Additionally, the A-stable property of BLC-IRK makes its use appealing to solving stiff
ODEs, including atmospheric entry.

We demonstrated superior performance of BLC-IRK over commonly used ERK methods
for near circular orbits while closely matching GJ 8, even when operating in serial mode
(no parallelization). Note that the GJ 8 results presented here were done with an imple-
mentation that uses one force model evaluation per step only. Ordinary versions of GJ 8
would likely contain iteration, resulting in several force model evaluations at each step. The
presented BLC-IRK implementation of using both low- and high-fidelity force models is
a major contributor to the efficiency. The specific execution can be tuned for each unique
scenario, leaving room for improvement even on the implementation presented here. The
low-fidelity model used here is just an example. Deep space and GEO scenarios may benefit
from including a rough third-body contribution into the low-fidelity model. It should also
be noted that this low-/high-fidelity implementation is applicable to any IRK method. While
BLC-IRK is slightly less efficient than GJ 8, BLC-IRK is a brand new technique, leaving
room for additional research and improvement. In contrast, the Gauss–Jackson scheme has
been around for many years and has essentially maximized its potential. Gauss–Jackson
is also neither symplectic nor A-stable. When applicable, parallelization would result in a
significant improvement in efficiency over the GJ 8 scheme.

This paper outlined the dense output algorithm for BLC-IRK as well. We demonstrated
that interpolating a BLC-IRK trajectory using its collocation algorithm yields a high accuracy,
smooth, and continuous solution. We also showed that the accuracy of Lagrange interpolation
of a BLC-IRK trajectory is superior to that of a Dormand and Prince 8(7) propagated orbit.
This is an appealing aspect of collocation methods, where the higher node density provides
a better base for interpolation. This is especially important to conjunction assessment where
solutions are required at various points in time along a trajectory.
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