












































additional accuracy needed we can use only one relatively more expensive numerical
reduction step.

III.2.3. Bifurcation and stability analysis. The third example we will consider is the
equation

x9~t! 5 ~1 2 x2~t!! x~t! 1 A sin~t/e!, x~0! 5 x0, (3.50)

wheree is a small parameter associated to the scale of the oscillation in the forcing term.
If the amplitudeA 5 0, then the solutionx(t) has one unstable equilibrium point atx0 5
0 and two stable equilibria atx0 5 21, 1 (see Fig. 3).

A small perturbation in the forcing term will effect large changes in the asymptotic
behavior ast tends to infinity. Therefore, the behavior of the solution on a fine scale will
affect the large scale behavior. In particular, if the amplitudeA is nonzero but small, then
the solutionx(t) has three periodic orbits. Two of the periodic orbits are stable while one
is unstable (see Fig. 4). As we increase the amplitudeA, there is a pitchfork bifurcation—
the three periodic orbits merge into one stable periodic orbit (see Fig. 5). We would like
to know if we can determine numerically the initial values of these periodic orbits from
the reduction procedure and if those periodic solutions are stable or unstable. We will
compare these results derived from the reduction procedure with those from the asymp-
totic expansion ofx for initial values nearx0 5 0 and for smalle. Let us begin with the
asymptotic expansion ofx for small values ofe. Assume we have an expansion of the form

x~t; e! , 0 1 ex1~t, t! 1 e2x2~t, t! 1 · · · , (3.51)

where the fast time scalet is given byt 5 t/e. If we substitute the expansion (3.51) into
the Eq. (3.50), we have the equation
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FIG. 3. The flows for Eq. (3.50) with zero forcing.
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