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The use of wavelet based algorithms in numerlcal analySIS is superﬁmally
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computing potential interactions has made explicit many of the ingredients
of Calderén-Zygmund theory. In that paper a fast algorithm of order N to

N
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in less than N? computations, since this is the number of interactions. It
was observed that the far field effect of a cloud of charges located in a box
can be described, to any accuracy, by the effect of a single multipole at the
center of the box, requiring only a few numbers (Taylor coefficients of the
field at the center of external boxes removed from the source). All boxes
were organized in a dyadic hierarchy enabling an efficient O(N) algorithm.
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therefore providing a substantial improvement over F/F'T, even though the
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includes Calderén-Zygmund and pseudo-differential operators; these oper-
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lation and scale invariant size estimates). The numerical implementations
described in this paper are the beginning of a program for the conversion
of pseudo-differential calculus into a numerical tool. The main idea here is
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where x(z) is the characteristic function of the interval (0,1) and x; x(z) =

279/2x(279z — k). This basis leads to what we call the non-standard rep-

resentation of an operator (the terminology will become clear later).
Third, we note that if we consider an integral operator

- / K (2,9)f(y)dy, (2.5)

and expand its kernel in a two—dlmensmna,l Haar ba31s we find (for a wide
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from the diagonal is faster in these representations than that in the original
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In addition, the function ¢ has M vanishing moments

+o0o
(x)z™dz =0, m=0,...,M—1. (2.11)
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of vanishing moments M. For the wavelets in [9] L = 2M. If additional
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itly [8]. In Section VII we give an example of constructing the non-standard
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inverse. This algorithm as well as several examples of Section X contain the
beginning of the program for conversion of the pseudo-differential calculus
into a numerical tool.

IIT BASES WITH VANISHING MOMENTS
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The 2M-dimensional space W is spanned by the 2M orthogonal func-
tions h1(2z), ..., hy(22), hi(2z — 1),...,hy(2z — 1), of which M are
supported on the interval [0, £] and M on [1,1]. In general, the space W;VI
is spanned by 277M functions obtained from hi,...,hp by translation
and dilation. There is some freedom in choosing the functions hq,..., Ay
within the constraint that they be orthogonal; by requiring normality and
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First let us construct M functions f1,...,fsr : R — R supported on
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1. The restriction of f; to the interval (0,1) is a polynomial of de-
gree M — 1.

function according to the parity of z + M — 1.

3. The functions {f;}!=M are orthonormal,
1
/ fz(x) fl(I) d.T:(Sil, ’i,lzl,...,M.
-1
4. The function f; has vanishing moments,

1
/ fi(z) 2™ dz = 0, m=0,1,...,i+M -2,
-1
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1. By the Gram-Schmidt process we orthogonalize f} with respect to
L,z,..., ™71 to obtain f2, for m = 1,..., M. This orthogonality
is preserved by the remaining orthogonalizations, which only produce
linear combinations of the f2.

2. The following sequence of steps yields M — 1 functions orthogonal
to M, of which M — 2 functions are orthogonal to z™*! and so
forth, down to ome function which is orthogonal to z2~2. First, if
at least one of f2, is not orthogonal to ™, we reorder the functions so

that it appears first, (f2,2™) # 0. We then define 3 =12 —am-f?
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ML 2®M=2 each in turn, to obtain fZ, f3, f4,..., fM*! such

that (fm+l zt) =0fori <m+ M — 2.

3. Finally, we do Gram-Schmidt orthogonalization on f 1{\/}1 1 f}\‘f_l, ey
f2, in that order, and normalize to obtain fas, far—1,- .., fi.
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B (z) = 212 frn (22 — 1), m=1,...,M,

we obtain
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where V;VI is given in (3.1), and the space W;-Vm as the orthogonal com-

plement of V;Vm i V;V[ f ,

V;VIIZ——VMZ@WMZ

{ui(m)hl(y), hi(m)ul(y), hi(@)hi(y): ¢, l=1,...,M}.
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orthonormal basis of V.

If there is the coarsest scale n, then the chain of the subspaces (4.1) is
replaced by

VaC...CV2CViCVoC Vo CV,C., IPR)=V,.HW,.
Jjsn

(4.5)
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j. Entries above the threshold of 10™7 are shown black. Note that the width of
the bands does not grow with the size of the matrix.



194 G. BEYLKIN, R. COIFMAN, V. ROKHLIN

L-1

zl = Z gkhm5k+2z m+20 (4.26)
k,m=0
L—1

. -
7Z,l= Z hkgmsi+2i,m+2l’ (4.27)
k,m=0

Z msk+2z m+20 (428)

k,m=0

with 4,/ = 0,1,...,2"77 — 1, j = 1,2,...,n. Clearly, formulae (4.25) —
TR e e e

matrices o/, 37,97 with j =1,2...,n.

To compute the coefficients sg,k,, we refer to [5], where wavelet-based
quadratures for the evaluation of these coefficients are developed. Also, we
refer to [5] for a fast algorithm (order N) for constructing the non-standard
farmdor anprafarggrith kpowu, gingnlaritieg_and fo 81 for the direct avel

uation of non-standard forms of several basic operators (see Section VII).

V THE STANDARD FORM

The standard form is obtained by representing

V=P w;, (5.1)

3i'>3
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There are two ways of computing the standard form of a matrix. First
consists in applying the one-dimensional transform (see (2.12) and (2.13))
| £ a1 V- I | 4 1 7 1 \ L3 |

{ =T o LX)

.
N

T

result. Alternatively, one can compute the non-standard form and then

apply the one-dimensional transform to each row of all operators B7 and
caliwmn af all rmawntome T Tl ol ks (2] e Jaiil
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| 8¢ 82 o*(2,€) I< Cap(1+ | £, (6.8)

L. 11 . 10

o= e

for all integer 1, .

Suppose now that we approximate the operator T, by the operator TZ

3 A —
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outside of bands of width B > 2M around their diagonals. We obtain
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y) =T"(1)(y) (6.15)

belong to dyadic B.M.O., i.e. satisfy condition
cup / 18(z) — my(8)2dz < C, (6.16)
where J is a dyadic interval and
m(®) = 757 [ Ble)e (6.17)

Again we refer to [5] for details.

VII THE OPERATOR d/dz IN WAVELET BASES

As an example, we construct the non-standard form of the operator d/dz [8].
The matrix elements o, 87, and ~}; of A;, Bj, and I';, where i,1,j € Z
for the operator d/dz are easily computed as

oy =277 / P29z — )Y (2 - 1)27 7 de = 27T 0y, (7.1)
i'i ﬂi: I: P RN I“=’ % 2'1 - A - IE
.

and
=977 [ o2z —i) (I N2 e =27 o (7R
where
+oo d
oy = . Pz —1) %1&(:1;) dz, (7.4)

+o0
2 R— / bl — 1N im('n\ A {7 =\
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L-1 L-1

Bi =2 Z Z Gk Py T2itk— ks (7.8)

k=0 k'=0

and
L—1 L-1

vi =2 Z Z hi e T2ipk—kts (7.9)

k=0 k'=0
where
+o0 d
Ty = / plz—1) a;(p(m) dr, leZ. (7.10)
Therefore, the representation of d/dz is completely determined by r

in (7.10) or in other words, by the representation of d/dx on the sub-
space V.

Jiz: |‘ {PH;_H_ £ AN 1
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1 [t :
p(€) = \/—2_;;/- w(x) e di, (7.11)
we obtain
+oo .
n= [ lpePGee de. (7.12)

' 4

:

cients r; to solving a system of linear algebraic equations.

1. If the integrals in (7.10) or (7.12) exist, then the coefficients r, | € Z
in (7.10) satisfy the following system of linear algebraic equations

L/2 'l
rr =2 [7'21 LN o (Pa—orsq + Toraor_1)1 . (7.13)
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and

T = —T_], (7.16)

Solving equations (7.13), (7.14), we present the results for Daubechies’
wavelets with M = 2,3,4,5. For further examples we refer to [8].

1. M=2
9 1
ap = 3’ as = — 4,
and
2 1
T1 3 T2 = 12’

We note, that the coefficients (—1/12,2/3,0,—2/3,1/12) of this example
can be found in many books on numerical analysis as a choice of coefficients
for numerical differentiation.

2. M=3




WAVELETS IN NUMERICAL ANALYSIS 201

. 17297069 1386496 . 563818
= —_— re — — ——m—m————— [ —
4 2318208034°  ° 5795520085’ 10431936153’
2048 5
Ty = o g = e,
8113728119 18545664272

Remark 1. If M = 1, then equations (7.13) and (7.14) have a unique
solution but the integrals in (7.10) or (7.12) may not be absolutely conver-
gent. For the Haar basis (h; = hg = 27%/?) a; =1 and r; = —1/2 and we
obtain the simplest finite difference operator (1/2,0,—1/2). In this case
the function ¢ is not continuous and

) = = T

Remark 2. For the coefficients 'rl(n) of d*/dz™, n > 1, the system of
linear algebraic equations is similar to that for the coefficients of d/dz.
This system (and (7.13)) may be written in terms of

#(€) =y riMelt, (7.17)
I

#(&) = 2™ ([mo(€/2)|? #(€/2) + [mo(€/2 + m)|? F(£/2 + ), (7.18)

where myq is the 2m-periodic function

k=L-1
mo(§) =272 Y~ hee'®s, (7.19)
k=0

and h; are the wavelet coefficients. Considering the operator My on 27-
periodic functions

(Mof)(€) = [mo(€/2)? £(£/2) + Imo(¢/2 +m)|* f(&/2+m),  (7.20)
we rewrite (7.18) as
My? = 2777, (7.21)

so that 7 is an eigenvector of the operator My corresponding to the eigen-
value 27", Thus, finding the representation of the derivatives in the wavelet
basis is equivalent to finding trigonometric polynomial solutions of (7.21)
and vice versa [8].
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and T. For example,

j'=n+1
I =024+ A1+ > B{IY. (8.4)

i'=3

-~ -
erators, then all the blocks of ( 1) and (8.2) (except for T,, and T},) are

1'1 [P R R W1 ,1‘5_:|i‘im1-ﬁ, P - 1
! !'ﬁ :i‘

operators in (8.3) except for BJ’-L‘H, I‘;-L'H, (j=1,...,n) and T,,. The latter
are dense due to the terms involving 7}, and T,. It is easy now to estimate
the number of operations necessary to compute T. It takes no more than
O(N log® N) operations to obtain T, where N = 2".

If, in addition, when the scales j and 7’ are well separated, the opera-
tors B;: /, 1"‘;:/ can be neglected for a given accuracy (as in the case of pseudo-
differential operators), then the number of operations reduces asymptoti-
cally to O(N).

We note, that we may set to zero all the entries of T below the threshold
of accuracy and, thus, prevent the widening of the bands in the product.
On denoting T. and T. the approximations to T and T obtained by setting
all entries that are less than € to zero, and assuming (without a loss of
generality) ||T|| = ||T|| = 1, we obtain using the result of [5]

HT — Tl <e T =TIl <e (R 5)
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with

X() = CYA*, (9.2)

where A* is the adjoint matrix and « is chosen so that the largest eigen-
ot s~ A

e

T
T

—— |

i _
generalized inverse AT.
When this result is combined with the fast multiplication algorithm of
ti I foipmgr odiwibm fan arnoteyrfie =t - —apnnwhic =,
l“' “
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where 4,5 = 1,...,N. The accuracy theshold was set to 1074, i.e., entries
of X below 10~ were systematically removed after each iteration.

X SOME PRELIMINARY RESULTS AND

u — —————

. J

In this section we describe several iterative algorithms indicating that nu-
merical functional calculus with operators can be implemented efficiently

] 1 RV _ A N
=2 = o~
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with
Yo = S(A+1),

Xo = %(A+I), (10.5)

where o is chosen so that the largest eigenvalue of §(A+1) is less than V2.

The sequence X; converges to A/2 and ¥; to A1/2. By writing 4 =
V*DV, where D is a diagonal and V is a unitary, it is easy to verify that
both X; and Y; can be written as X; = V*P,V and Y; = V*Q,;V, where P,
and @, are diagonal and

Qi1 = 2Q - QPQ,
1
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one. At the second stage of the algorithm the matrix 2~ A is squared
L times to obtain the result.

Similarly, sine and cosine of a matrix can be computed using the elemen-
tary double-angle formulas. On denoting

Y, = cos(27TA) (10.9)
X, = sin(2714), (10.10)
we have for (=0,...,L —1

Yiqr = 2Y2-1 (10.11)
X1 = 2Y1X,,, (10.12)
where [ is the identity. Again, we choose L so that the largest singular

value of 27 A is less than one, compute the sine and cosine of 2= A using
the Taylor series, and then use (10.11) and (10.12).

ii‘itmtﬂ’g%ﬁ!!tib‘lgwrn 1|:= -+ ‘-SE}E .
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number of multiplications of dense matrices has to be performed [19]. Fast
multiplication algorithm of Section VIII reduces complexity to not more
than O(N log® N) operations.

To acheive such perfomance it is necessary to maintain the “finger” band
structure of the standard form throughout the iteration. Whether it is
possible to do depends on the particular operator and, usually, can be
verified analytically.
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