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form of (2.4),

u.x; t/ D
nX

iD1

ci e
.t¡·i /Lu.x; ·i /C

Z t

0
e.t¡¿/LN .u.x; ¿ //d¿;

nX
iD1

ci D 1; (2.5)

can be considered, whereu.x; ·i /; i; 1 : : : ;n, are assumed to be known (we use (2.5) with
nD 1).

The operatorL and the exponential operator eLt in (2.4) incorporate the boundary con-
ditions. For example, writingu.x; t/D eLt u0.x/ implies that the functionu.x; t/ solves
ut DLu with the initial conditionu.x; 0/D u0.x/ and the boundary conditionBu.x; t/D 0
for x 2 @˜.

The integral equation (2.4) is easy to use for numerical purposes if, for example,L is
an operator with constant coefficients andu is a periodic function. In this caseL can be
represented by a diagonal matrix in the Fourier basis. For instance, ifL is the Laplacian and
u.x/D eikx, then1uD¡k2u and, in such a case, the exponential operatore.t¡¿/L simply
reduces to multiplication bye¡k2.t¡¿/. However, for a general linear operatorLwith variable
coefficients, the exponential operators appearing in this equation are represented by dense
matrices. As far as we know, this is the main reason for the limited use of (2.4) as a starting
point of numerical discretization.

We observe that the situation is different for the exponential operators on a wide class of
linear operators in a wavelet system of coordinates. The sparsity of the exponential operators
was utilized in [7] for constructing a numerical algorithm for the solution of PDEs of the
form (2.1). In this paper we develop this approach further in order to construct a collection
of high order discretizations of (2.4) with good stability properties.

2.2. A Procedure for Time Discretization

In order to simplify the notation in our derivation, we replace a linear operatorL by a
scalarq since the coefficients of the scheme are analytic (operator) functions ofL. Since
all such functions commute with each other, it is sufficient to consider a scalar in deriving
the coefficients of the numerical scheme.

Thus, instead of (2.1) and (2.4), it is sufficient to examine

ut D quCN .u/ (2.6)

and

u.x; t/ D eq.t¡·/u.x; ·/C
Z t

0
eq.t¡¿/N .u.x; ¿ //d¿; (2.7)

where 0• ·• t andu.x; ·/ is given.
Let us consider the functionu.x; t/ at the discrete moments of timetnD t0C n1t , where

1t is the time step so thatun· u.x; tn/ andNn· N .u.x; tn//. Discretizing (2.7) yields

unC1 D eql1t unC1¡l C1t

ˆ
° NnC1C

M¡1X
mD0

flmNn¡m

!
; (2.8)

whereM C 1 is the number of time levels involved in the discretization andl •M . The
expression in parenthesis in (2.8) may be viewed as the numerical quadrature for the integral
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FIG. 1. Stability diagram of the third-order Adams–Moulton/Adams–Bashforth scheme. The curves corre-
spond to different values of the parameterq1t .q1t D 0 corresponds to the explicit scheme). This plot reproduces
Fig. 6 in [14].

FIG. 2. Stability diagram of the mixed implicit–explicit stiffly stable scheme of third order (q1t D 0 corre-
sponds to the explicit scheme). This plot reproduces Fig. 7 in [14].
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FIG. 8. Stability diagram for the fourth-order implicit scheme withl D 1;M D 3 and coefficients from Table I.

FIG. 9. Stability diagram for the second-order explicit scheme withM D 2; l D 1 and coefficients from Table II.
The curve atq1t D 0 corresponds to the boundary of the stability region of the second-order Adams–Bashforth
method.
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FIG. 11. Error as a function of time for Example 1 for first-, second-, and third-order explicit ELP schemes.

EXAMPLE 2. Again using explicit ELP schemes in time and multiwavelets in space, we
consider Burgers’ equation

ut D ”uxx ¡ uux; x 2 [0; 1]: (4.10)

A reference solution with periodic boundary conditions may be written as

u.ref/ D ¡2”
`x.x ¡ ct; t C ¿/
`.x ¡ ct; t C ¿/ ; ¿ >0 (4.11)

where

`.x; t/ D
1X

nD¡1
e¡.x¡n/2=4”t : (4.12)

In Fig. 12 we display the numerical solution forcD 4; ”D 0:1=… , and¿ D 1=.2…/ (these
are parameters of the standard test case) so that the profile moves at speedcD 4. The
pointwise numerical error for the solution att D 1=16 is plotted in Fig. 13. The maximum
numerical error is given in Table V for the explicit first-, second-, and third-order ELP

TABLE V

Maximum Error of the Solution of the Periodic Burgers’

Equation at the Time t = 1/16, v= 0.1/…, and c= 0, 4

cnorder First Second Third

0 9:6£ 10¡4 3:6£ 10¡7 5:9£ 10¡10

4 3:0£ 10¡2 4:2£ 10¡4 6:5£ 10¡6
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FIG. 12. Solution of the periodic Burgers’ equation att D 0 andt D 1=16;”D 0:1=…; cD 4.

FIG. 13. The pointwise error for the solution of periodic Burgers’ equation att D 1=16.













     

NEW TIME DISCRETIZATION SCHEMES FOR PDES 387

11. M. Hochbruck and C. Lubich, On Krylov subspace approximations to the matrix exponential operator,SIAM
J. Numer. Anal.34(5), 1911 (1997).

12. A. Iserles,A First Course in the Numerical Analysis of Differential Equations(Cambridge Univ. Press,
Cambridge, 1996).

13. M. K. Jain and V. K. Srivastava,High Order Stiffly Stable Methods for Ordinary Differential Equations,
Technical Report 394, University of Illinois, Urbana, II, 1970.

14. G. E. Karniadakis, M. Israeli, and S. A. Orszag, High order splitting methods for the incompressible Navier–
Stokes equations,J. Comput. Phys.97, 414 (1991).


