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form of (2.4),
> Z, X
ux;t/ D getifux;-i/C  eliEN X/ di; ¢ D1, (2.5)
iD1 0 iD1

can be considered, whewex; -i/;i;1:::;n, are assumed to be known (we use (2.5) wit
nD1).

The operator” and the exponential operatdten (2.4) incorporate the boundary con-
ditions. For example, writingi.x; t/ D €tuy.x/ implies that the functionu.x;t/ solves
u; D Lu with the initial conditionu.x; 0/ D ug.x/ and the boundary conditidfiu.x; t/D 0
forx20—.

The integral equation (2.4) is easy to use for numerical purposes if, for exathfde,
an operator with constant coefficients amés a periodic function. In this casg can be
represented by a diagonal matrix in the Fourier basis. For instantés the Laplacian and
u.x/D€"x, then1uD jk?u and, in such a case, the exponential operatfd¢’~ simply
reduces to multiplication bgi i</ _However, for a general linear operatowith variable
coefficients, the exponential operators appearing in this equation are represented by
matrices. As far as we know, this is the main reason for the limited use of (2.4) as a sta
point of numerical discretization.

We observe that the situation is different for the exponential operators on a wide cla:
linear operators in a wavelet system of coordinates. The sparsity of the exponential opel
was utilized in [7] for constructing a numerical algorithm for the solution of PDEs of tl
form (2.1). In this paper we develop this approach further in order to construct a collec
of high order discretizations of (2.4) with good stability properties.

2.2. A Procedure for Time Discretization

In order to simplify the notation in our derivation, we replace a linear operataoy a
scalarqg since the coefficients of the scheme are analytic (operator) functiofis ®ihce
all such functions commute with each other, it is sufficient to consider a scalar in deri
the coefficients of the numerical scheme.

Thus, instead of (2.1) and (2.4), it is sufficient to examine

u DquCWN.u/ (2.6)

and
Z t
ux;t/ Deltiux;-/C e ux; /1 d; (2.7
0
where 0= - =t andu.x; -/ is given.
Let us consider the functiam x; t/ at the discrete moments of tiheD to C nlt, where
1t is the time step so that, - u.x;t,/ andN, - A.u.x;t,//. Discretizing (2.7) yields
- 1

Ml
Unct D €@ MUnc1; €1t Noci € flgNpym (2.8)
mDO

whereM C 1 is the number of time levels involved in the discretization bedVi. The
expression in parenthesis in (2.8) may be viewed as the numerical quadrature for the int
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FIG. 1. Stability diagram of the third-order Adams—Moulton/Adams—Bashforth scheme. The curves co
spond to different values of the paramejdrt .q1t D O corresponds to the explicit scheme). This plot reproduce
Fig. 6 in [14].

FIG. 2. Stability diagram of the mixed implicit—explicit stiffly stable scheme of third ordgkt(D O corre-
sponds to the explicit scheme). This plot reproduces Fig. 7 in [14].
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FIG. 8. Stability diagram for the fourth-order implicit scheme with 1; M D 3 and coefficients from Table I.

FIG.9. Stability diagram forthe second-order explicit scheme WtD 2; | D 1 and coefficients from Table Il.
The curve agj1t D 0 corresponds to the boundary of the stability region of the second-order Adams—Bashf
method.
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FIG. 11. Error as a function of time for Example 1 for first-, second-, and third-order explicit ELP scheme

EXAMPLE 2. Again using explicit ELP schemes in time and multiwavelets in space,
consider Burgers’ equation

Ut D "uxy § UUy; X 2]0;1]: (4.10)

A reference solution with periodic boundary conditions may be written as

Ty X jet;tCyl
upjor X >0 4.11
! TXijcettCyl/ ¢ ( )
where
x
S.x;t/D gi Xin/=amt. (4.12)

nDjl1

In Fig. 12 we display the numerical solution fob 4;” D 0:1=..., and;, D 1=.2.../ (these
are parameters of the standard test case) so that the profile moves atgpéedhe
pointwise numerical error for the solutiontdd 1=16 is plotted in Fig. 13. The maximum
numerical error is given in Table V for the explicit first-, second-, and third-order EL

TABLE V
Maximum Error of the Solution of the Periodic Burgers’
Equation at the Timet=1/16,v=0.1/..,andc=0, 4

cnorder First Second Third

0 96 £ 1014 36 £10i7 5.9 £ 10i%0
4 30£ 1012 4.2 £ 1014 6.5 £ 10i°
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FIG. 12. Solution of the periodic Burgers’ equationtdd 0 andt D 1-16;” D 0:1~..; cD 4.

FIG. 13. The pointwise error for the solution of periodic Burgers’ equation2i=16.
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