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On the Design of Highly Accurate and Efficient IIR
and FIR Filters

Gregory Beylkin*, Ryan D. Lewis, and Lucas Monzón

Abstract—We describe a systematic method for designing
highly accurate and efficient infinite impulse response (IIR) and
finite impulse response (FIR) filters given their specifications. In
our approach, we first meet the specifications by constructing
an IIR filter with, possibly, a large number of poles. We then
construct, for any given accuracy, an optimal IIR version of
such filter (with a minimal number of poles). Finally, also for
any given accuracy, we convert the IIR filter to an efficient
FIR filter cascade (either serial or parallel). Since in this
FIR approximation the non-causal part of the IIR filter only
introduces an additional delay (as a function of the desired
accuracy), our IIR construction does not have to enforce causality.
Thus, we obtain a simple method for constructing linear phase
filters if the specifications so require. All of these procedures
are accomplished via robust, fast algorithms. We provide several
illustrative examples of our method.

Index Terms—Approximation algorithms, digital filter design,
FIR filters, IIR filters, optimal rational approximations, quadra-
ture mirror filters.

I. INTRODUCTION

IN HIS 2006 paper “The Rise and Fall of Recursive Digital
Filters,” [1] Rader gives a brief history of filter design
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response hd(n), up to some finite but arbitrary accuracy ε > 0
over a certain range of the index n ∈ Z.

Our solution makes use of an algorithm in [2], [9]. Given
a sequence

hd(n), 1 ≤ n ≤ 2N +1

and a target accuracy ε > 0, we determine the optimal (mini-
mal) number of nodes γm and weights wm such that∣∣∣∣∣hd(n)−

M

∑
m=1

wmγ
n
m

∣∣∣∣∣ < ε, 1 ≤ n ≤ 2N +1. (II.2)

We now describe the steps of the algorithm to obtain this
approximation.

Algorithm 1:
• Build the N +1×N +1 Hankel matrix

Hk` = hd(k + `+1 1 1
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Remark 2. In many cases of practical interest, some type of
symmetry exists between hd(n) and hd(−n). In such cases
a corresponding symmetry is induced between poles inside
and outside the unit disk and their corresponding weights. For
example, it is quite common for the impulse response to be
real and symmetric,

hd(n) ∈ R and hd(−n) = hd(n),

in which case it is not difficult to show that poles appear at
conjugate-reciprocal locations and the corresponding weights
are complex conjugates, so that with a suitable reordering
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this process introduces some approximation error, so we will
allocate a portion of the total allowable error, as given in the
filter specifications, to each of the three steps.

Consider the following lowpass filter specification:∣∣H(e jω)−1
∣∣ < 10−4, |ω| <

80
140∣∣H(e jω)

∣∣ < 10−4, |ω| >
81
140

,
(III.1)
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Figure III.1. Frequency response of the lowpass filters Hd (dash-dot line),
H (solid line), and H̃ (dashed line) in the passband (top) and the stopband
(bottom). H̃ is an excellent approximation of H
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produces serious numerical difficulties effectively precluding
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yields fast codes. For hardware-based realizations, the serial
cascade structure in [5] may also be considered.

Remark 12. A non-causal filter lacking a symmetric impulse
response does not possess symmetry of poles inside and
outside the unit disk. In this situation, the poles inside the
unit disk may be applied using the standard recursive equations
and the poles outside the unit disk using an appropriate FIR



9

Table II
POLES AND WEIGHTS OF THE “STAIRCASE” FILTER H IN SECTION V-A,
AND THE NUMBER OF FACTORS REQUIRED FOR EACH POLE IN H̃ . THE

CONSTANT TERM IS w0 = 0.60057.

Pole zm Weight wm Factors
0.73729+0.64330 j 2.6451e-5−3.7663e-3 j 9

−0.21254+0.94461 j 7.2305e-6−5.5944e-3 j 8
0.67809+0.59327 j −4.3178e-4−1.1810e-2 j 7

−0.18571+0.83540 j 6.8318e-4−1.7861e-2 j 6
0.44780+0.42670 j −1.3985e-2−7.0914e-2 j 4

−8.7442e-2+0.42165 j −2.9205e-2−0.16703 j 4
−0.50671 −1.4759e-2 3

Such filters give rise to filter banks, and, with simple additional
constraints, to orthonormal wavelet bases. Filter banks provide
methods for efficiently applying operators to signals, in par-
ticular, operators that in the standard representation result in
very long filters, such as fractional derivatives or the Hilbert
transform (see, e.g., [22]). Filter banks have proven useful for
applications in signal processing, numerical analysis, and data
compression (see, e.g., [23]).

Depending on the application, we may request different
properties of the filter (V.1). Algebraically, many of these
properties are interrelated and several are mutually exclusive.
For example, no FIR QMF can be symmetric but nothing
prevents the design of symmetric IIR QMFs. We note that
many such restrictions on properties of QMFs are fragile; i.e.,
for any finite accuracy these restrictions disappear, and we
use this fact as a tool for the design of approximate QMFs
with the desired properties. Some examples may be found in
[5] and here we construct approximate IIR and FIR QMFs
that are symmetric (i.e., have linear phase), efficient, and have
attractive flatness and subband isolation properties.

In [24] a particularly interesting family of symmetric IIR
QMFs is introduced,

E4N(z) =

(1+ z)2N
(

(1+ z)2N +(−1)N
√

2(1− z)2N
)

(1+ z)4N +(1− z)4N +(−1)N
√

2(1− z2)2N
, (V.2)

where the positive integer parameter N simultaneously controls
the flatness of the passband and stopband and the width of
the transition region. It may be that the value N required to
achieve a sufficiently narrow transition band results in a filter
that is excessively flat. We show how to use our method to
obtain an efficient FIR approximation of the original QMF that
retains the desired sharpness but gains efficiency by reducing
the excessive flatness. An example of such a QMF frequency
response is illustrated in Fig. V.3.

The filter flatness is controlled by the root of order 2N at
z = −1 of E4N(z). To obtain a more efficient, but less flat, IIR
filter, we factor our a portion of this high-order root and apply
the reduction algorithm from Section II-B to the remaining
terms. Observing that E4N(z) is real-valued on the unit circle,
we select some integer S < N (which controls the flatness of
the new filter) and rewrite E4N(z) as

E4N(z) =
(

1+ z
2

)S (
1+ z−1

2

)S

×

[
c+

2N

∑
n=1

sn

1− pn/z
+

sn
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Table III
POLES, WEIGHTS, AND NUMBER OF FACTORS REQUIRED IN THE FIR APPROXIMATION Ẽ80 OF THE IIR QMF E80 IN SECTION V-B. THE CONSTANT TERM

IS w0 = −1.24533870508.
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