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1 Department of Applied Mathematics, University of Colorado at Boulder, 526 UCB, Boulder, CO 80309-0526, USA.
2 Department of Mathematics, Ohio University, 321 Morton Hall, Athens OH 45701, USA.

A multiparticle wavefunction, which is a solution of the multiparticle Schrödinger equation, satisfies the antisymmetry con-
dition, thus making it natural to approximate it as a sum of Slater determinants. Many current methods do so but, in addition,
they impose structural constraints on the Slater determinants, such as orthogonality between orbitals or a particular excitation
pattern. By removing these constraints, we hope to obtain much more efficient expansions.

We use an integral formulation of the problem, a Green’s function iteration, and a fitting procedure based on the computa-
tional paradigm of separated representations. For constructing and solving a matrix-integral system of equations derived from
antisymmetric inner products, we develop new algorithms with computational complexity competitive with current methods.

We describe preliminary numerical results and make some observations.

Given the difficulties of solving the multiparticle Schrödinger equation, current numerical methods in quantum chem-
istry/physics are remarkably successful. Part of their success comes from efficiencies gained by imposing structural con-
straints on the wavefunction to match physical intuition. However, such methods scale poorly to high accuracy, and are biased
to only reveal structures that were part of their own construction. In [3] we develop a method that allows better scaling to
high accuracy and an unbiased exploration of the structure of the wavefunction by approximating it as an unconstrained sum
of Slater determinants.

Motivated by the physical intuition that electrons may be excited into higher energy states, the Configuration Interaction
(CI) family of methods choose a set of determinants with predetermined orbitals, and then optimize the coefficients used to
combine them. When it is found insufficient, methods to optimize the orbitals, work with multiple reference states, etc., are
introduced. A common feature of all these methods is that they impose some structural constraints on the Slater determinants,
such as orthogonality of orbitals or an excitation pattern. As the requested accuracy increases, these structural constraints
trigger an explosion in the number of determinants used, making the computation intractable for high accuracy. The a priori
structural constraints present in CI-like methods also force the wavefunction to comply with such structure, whether or not it
really is the case. For example, if you use a method that approximates the wavefunction as a linear combination of a reference
state and excited states, you could not learn that the wavefunction is better approximated as a linear combination of several



The Hamiltonian is the sum of kinetic, nuclear and electron-electron potential operators,

H = T + V + W ,

where the kinetic energy operator is T = − 1
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∆i and ∆i is the Laplacian for particle with index i, the nuclear po-

tential for a set of nuclei at positions Ra with charges za is the multiplication operator V =
∑N

i=1
V (ri), with V (r) =

∑
a −za/‖r− Ra‖, and the electron-electron interaction operator is the multiplication operatorW = 1
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