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The wavefunction for the multiparticle Schrödinger equation is a function of many
variables and satisfies an antisymmetry condition, so it is natural to approximate it
as a sum of Slater determinants. Many current methods do so, but they impose
additional structural constraints on the determinants, such as orthogonality between
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that approximates the wavefunction as a linear combination of a reference state and excited states,
you could not learn that the wavefunction is better approximated as a linear combination of several
nonorthogonal, near-reference states. Thus, the choice of numerical method is not just a compu-
tational issue; it can help or hinder our understanding of the wavefunction.

For these reasons, our goal is to construct an adaptive numerical method without imposing a
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1. What is new here

In this work, we construct and demonstrate a method that also uses a wavefunction of the
form �5� but without constraints on the �i

l. We remove both structural constraints, such as an
excitation pattern or orthogonality between single-electron functions, and representation con-
straints, such as those imposed by using a predetermined basis set.

Many methods �e.g., Refs. 56, 48, 40, 2, 21, 18, 20, 3, 17, 61, and 42� have loosened the
constraints on the Slater determinants in one way or another, often with encouraging results. These
works, however, only partially removed the constraints, and so, we claim, did not achieve the full



importantly, in Sec. II B 2, we modify the iteration to preserve our wavefunction representation
�5�. Second, we approximate the Green’s function using Gaussians to some fixed but arbitrary
accuracy in operator norm �Sec. V A�. Third, we delegate the task of representing and operating
on functions of the single-electron variable � to an adaptive numerical method �see Ref. 5� with its
own accuracy control. We note that an alternative to Ref. 5 may be used for this purpose as long
as it is adaptive and has controlled accuracy. In this paper, we do not address some technical
issues, such as finding a good initial guess or determining stopping criteria.

Define the Green’s function

G� = �T − �I�−1 �7�

for ��0 and consider the Lippmann–Schwinger integral equation

���� = − G���V + W���� . �8�

The subscript � on �� and �� are to emphasize the dependence of the eigenvalues and eigenfunc-
tions on �. The operator G���V+W�� is bounded �see Refs. 35, 55, and 53� but without additional
assumptions, it is not compact �see Ref. 54 Sec. XIII 5�. Since we are interested in a bound state,
we assume that the operators act on a bounded domain, as is justified by the exponential decay of
the wavefunction.1 Under this assumption, G���V+W�� is compact, so �8� has only a discrete
spectrum.

If �=E, then there is an eigenvalue ��=1 and the corresponding eigenfunction �� of �8� is the
desired ground-state eigenfunction of �2�, as one can see by rearranging �8� into �2�. One can show
that ��=1 is the largest eigenvalue �see Ref. 45�, so a simple iteration such as the power method
yields the desired ground-state eigenfunction.

The eigenvalues �� depend analytically on �, so when � is sufficiently close to E, the power
method will still yield an eigenfunction of �8� with energy near the minimum of �4�. The conver-
gence rate of the power method to produce �� and �� is linear, and depends, as usual, on the gap
between the eigenvalues in �8�. From �� and ��, one can then compute an improved estimate �
for E. In the practical use of this approach, one does not wait for the power method to converge
at each step but instead intertwines it with the update of �. Beginning with an approximation to
the energy �0
E and an approximate wavefunction �0, one converts �8� to an iteration

�̃n = − G�n
��V + W��n� . �9�

After each iteration, one normalizes by setting

�n+1 = �̃n/��̃n� . �10�

Following the approach of Ref. 29, we can use the update rule

�n+1 = �n − ��V + W��n,�n − �̃n�/��̃n�2. �11�

Remark 1: An eigenfunction of �8� is an eigenfunction of �2� only when � is an eigenvalue of
�2� and the eigenfunction of �8� has eigenvalue �=1. To obtain the next eigenfunction of �2� above
the ground state, it appears that one needs to compute the first two eigenfunctions of �8�, the first
with eigenvalue �	1 and the second with eigenvalue �=1. We will develop such deflation
procedure elsewhere.

2. Approximating with fixed separation rank r

We restrict the method to approximate wavefunctions of the form �5�, with r fixed, by replac-

ing the definition of �̃n in �9�. We would like to redefine �̃n to be the function of the form �5� that
minimizes the �least-squares� error
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��̃n − �− G�n
��V + W��n��� . �12�

In general, such minimization problems may be ill posed in the sense that the infimum may occur
at a limit point �see Ref. 16 and the references therein�. In Ref. 6, we describe a method to balance
the least-squares error with the loss-of-precision error due to a large condition number, so that the
problem becomes well posed. However, even then, there are no known algorithms that assure
convergence to the global minimum. Instead, we settle for an algorithm that, at each iteration,

constructs a �̃n with lower value of �12�, unless it is already at a minimum.
Since fitting using �12� instead of directly using �9� introduces an error, the update rule �11�

may no longer give a quadratic convergence and, in any case, is not expected to converge to the
true energy. One may choose to replace the update rule �11� with the more robust but slower
converging rule

�n+1 =
�H�n+1,�n+1�

��n+1�2 , �13�

which is based on �4�. Other rules may be possible as well. At present, we do not have enough
numerical experience to decide which rule to prefer.

The Green’s function iteration itself does not enforce the antisymmetry condition. In order to
assure convergence to an antisymmetric solution, we use the pseudonorm induced by the pseudo-
inner-product �· , · �A= �A�·=



A�k,i� = �gk,gi� and b�k� = �gk, f� , �16 bf60�k



• r, the separation rank used in �5�.
• M, the cost to represent a function of �, as discussed in Sec. II B 2.
• MP, the cost to convolve a function of � with the Poisson kernel 1 / �r�. A Fourier-based

Poisson solver on a uniform grid would achieve M log M. For adaptive methods such as that
we used, MP may be considered proportional to M log M as well, but since the complexity
depends on the type of function to which the operator is applied, the estimate of the cost is
complicated �see the discussion in Refs. 5 and 19�.

• I, the number of Green’s function iterations, as discussed in Sec. II B 1. If we used more than
one alternating least-squares pass �Sec. II B 2� per iteration, then I would include a factor of
the number of passes.

• S, the number of conjugate gradient iterations used to solve the system in Sec. II B 2. Al-
though S in theory could be as many as the number of degrees of freedom rM, we generally
have a very good starting point and so expect only a very small number to be needed.

• L, the number of terms used to approximate the Green’s function to relative error � with
Gaussians. In Sec. V A, we prove that L=O��ln ��2� independent of � and N.

In terms of these parameters, the cost to store the representation �5� is

O�rNM� �19�

and the computational cost to perform the algorithm is

O�Ir2N2�L�N + MP� + S�N + M��� . �20�

For comparison, the cost to evaluate a single antisymmetric inner product via Löwdin’s rules is
O�N2�N+M��.

C. Further considerations

We have implemented the method developed here and tested it sufficiently to verify the
correctness of the algorithm as presented. The numerical results are too preliminary to allow us to
make any particular claims at this point, however, so we will present them separately. The linear
algebra accelerations based on Appendix B have not yet been implemented.

We develop the method in terms of the total variable � without specifying the spin states. If a
specific spin state is imposed on our initial trial wavefunction �0, the iteration will preserve this
state.

The representation �5� does not account for the interelectron cusp �see, e.g., Refs. 57, 47, 37,
50, 51, 36, and 27�, and thus we cannot hope to achieve a small error � in the wavefunction with
small r. As with CI methods, we may still be able to achieve a small error in the energy difference
of two systems, which is often the quantity of interest in chemistry. For the current work, we fix
r and adapt �i

l��i� and sl to minimize the error � rather than fix � and adaptively determine r. We
are developing an extension to �5� that incorporates the cusp and hope to achieve a small error �
through it.

Similarly, �5� is not size consistent/extensive. For example, if one applied it to a long line of
identical, noninteracting subsystems, then r is expected to grow exponentially in the number of
subsystems. We are developing a hierarchical extension to �5� suitable for such extended systems
and hope to achieve linear scaling through it.

Although we have focused on the multiparticle Schrödinger equation, the tools that we have
developed are another step toward general-purpose, automatically adaptive methods for solving
high-dimensional problems.
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III. ANTISYMMETRIC INNER PRODUCTS

In this section, we develop methods for computing antisymmetric inner products involving W,
V, and T. For this purpose, after setting notation, we develop methods for computing with low-
rank perturbations of matrices, review the antisymmetry constraint, and define a notion of maxi-
mum coincidence. With these, tools we then derive the main formulas.

A. Notation

We denote a column vector with suppressed indices by F and with explicit indices by F�i�. We
denote its conjugate transpose by F*. We use ei to denote the column vector that is 1 in coordinate
i and zero otherwise. A linear operator is written L. We denote a matrix with suppressed indices
by L and with explicit indices by L�i , j�. Recalling that r= �x ,y ,z��R3, we combine spatial
integration with summation over spins and define the integral

� f���d� = �
��



�A B

C D
� = �A��D − CA−1B� . �25�

Proof: �See, e.g., Ref. 52� It is easy to verify directly that

�A B

C D� = � I 0

CA−1 I
��A 0

0 D − CA−1B
�� I A−1B

0 I
� . �26�

Since the determinants of the first and third matrices are equal to 1, the determinant of the middle
matrix gives the desired result. �

Proposition 3 (determinant of a perturbation of the identity): Let �uq�q=1
Q and �vq�q=1

Q be two
sets of vectors of the same length, and uqv

q
* denote the outer product of uq and vq. Then,

�I + �
q=1

Q

uqv
q
*� = 


1 + v1
*u1 v1

*u2 ¯ v1
*uQ

v2
*u1 1 + v2

*u2 ¯ v2
*uQ

] ] � ]

v
Q
*u1 v

Q
*u2 ¯ 1 + v

Q
*uQ


 . �27�(27)Tje(v)Tj
/F4 1 Tf
6.9846 09/F6 1 Tf
34.5231 0 0 34.5231 245984432.39D TDPr



A� = �
i=N−Q+1

N

viui
*. �32�

For a modified pseudoinverse, we have the following.
Definition 5 (modified pseudoinverse):

A‡ = A† + A�. �33�

Note that A�, and thus A‡
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� = L−1�̃ , �39�

we have

A� =
1

N!
���L−1�̃���1� ¯ �L−1�̃���N��� = �L−1�

1

N!
���̃��1� ¯ �̃��N��� = �L−1�A
̃ . �40�

Thus, the antisymmetrizations of 
̃ and � are the same up to a constant, and we can use � instead

of 
̃ in calculations. The advantage of using � is that the resulting matrix of inner products L̂
=L�� ,
�= I; in other words, we have the biorthogonality property ��i ,� j�=�



1

2

�L�
N!�i�j
� 1

�r − r��

1 ¯ �̄i����1��� ¯ �̄ j�����1���� ¯ 0



1

2

�U��V*�	
i

si

N!
� �*�

j=1

N

sj
−1v ju j

*�̃WP��*�
k=1

N

sk
−1vkuk

*�̃�
− �*WP��

j=1

N

sj
−1v ju j

*�̃�*��
k=1

N

sk
−1vkuk

*�̃d�

=
1

2

�U��V*�
N! �

j=1

N

�
k=1

N

	
i�j,k

si� �*v ju j
*�̃WP��*vkuk

*�̃� − �*v jWP�u j
*�̃�*vk�uk

*�̃d� .

�49�

If L is singular, then at least one si is zero, and only terms that exclude those from the product in
�49� are nonzero. Since we exclude two indices in the product, if more than two si are zero, then
the entire inner product is zero. If exactly two are zero, then only one term in the sum survives. If
exactly one is zero, then we can simplify from a double to a single sum using symmetry. Recalling
the modified pseudoinverse from Definition 5 and sorting the zero si to the beginning for nota-
tional convenience, we obtain the following propositions.

Proposition 8: When the rank deficiency of L is more than 2, the antisymmetric inner product
(41) evaluates to zero.

Proposition 9: When the rank deficiency of L is equal to 2, the antisymmetric inner product
(41) is equal to

1

�L‡�N!
� �*v1u1

*�̃WP��*v2u2
*�̃� − �*v1WP��*v2u1

*�̃�u2
*�̃d� . �50�

Proposition 10: When the rank deficiency of L is equal to 1, defining �=L†�̃ or �=L‡�̃, the
antisymmetric inner product (41) is equal to

1

�L‡�N!
� �*v1u1

*�̃WP��*�� − �*v1WP�u1
*�̃�*��d� . �51�

In computing �50�, constructing �*v1, �*v2, u
1
*�̃, and u

2
*�̃ costs O�NM�, applying WP�·�

costs O�MP� and, finally, the integral in � costs O�M�. In computing �51�, the first term costs
O�NM� to form �*�, O�MP� to apply WP�·�, and O�M� to integrate in �. The second term costs

O�NM� to form u
1
*�̃�, O�NMP� to apply WP�·�, O�NM� to apply �, and O�M� to integrate in

�. In total, the computational cost for the singular cases is less than the cost of the nonsingular
case.

Remark 11: In the CI context, rank deficiency 2 corresponds to a double excitation. The
vectors ui and vi would be zero except for a single entry, and so select the locations of the excited

electrons out of � and �̃.



Proof: We follow the same procedure as we used for the electron-electron operator W in Sec.
III F. Instead of �44�, we have the simpler expression

�L�
N!�i
� �I + ��T* + V*���̄i�������� − ei�ei

*�d� . �54�

Applying Proposition 3, we obtain �53�. �

To analyze the computational cost to compute �53�, we note that it costs O�NM� to apply
�T*+V*��·�. Including the cost for the maximum coincidence transformation, our total cost is thus
O�N2�N+M��.

1. The Singular Case

We now state the formula when L is singular. The analysis is similar to that for W in Sec.
III F 1.

Proposition 13: If the rank deficiency of L is greater than 1, (52) evaluates to zero. If it is
equal to 1, we have

1

�L‡�N!
� �T* + V*���*v1�u1

*�̃d� . �55�

To compute �55�, it costs O�NM� to form �*v1 and u
1
*�̃, and O�M� to apply �T*+V*��·�.

IV. INCORPORATING DELTA FUNCTIONS INTO THE ANTISYMMETRIC INNER
PRODUCTS

In this section, we show how to compute antisymmetric inner products when one of the
component functions is replaced by a delta function. For concreteness, we will replace �̃1��1� by

��−�1�.

A. Löwdin’s rule with �„�−�1… present

The matrix L from �37� is defined by L�i , j�= ��̃i ,� j�. If we replace �̃1��1� by 
��−�1�, then
the first row depends on � and is given by L�1, j�= �
��− · � ,� j�=� j���. We thus have a matrix
that depends on �,

L��� = �
�1��� �2��� ¯ �N���

��̃2,�1� ��̃2,�2� ¯ ��̃2,�N�
] ] � ]

��̃N,�1� ��̃N,�2� ¯ ��̃N,�N�
� . �56�

To compute with L��� without resorting to cofactor expansions, we express L��� as a rank-1
perturbation of a matrix of numbers. Define

E = � d̄�1� d̄�2� ¯ d̄�N�

��̃2,�1� ��̃2,�2� ¯ ��̃2,�N�
] ] � ]

��̃N,�1� ��̃N,�2� ¯ ��̃N,�N�
� , �57�

where the vector d* is chosen to be a unit vector orthogonal to the remaining rows of E. This
choice assures that the rank deficiency of E will be smaller than or equal to the rank deficiency of
the matrix with any other first row. It also gives us some convenient properties, namely, Ed=e1,
d*E‡=e

1
*, E‡e1=d, and e

1
*E=d*, where E‡ is the modified pseudoinverse of Definition 5. It costs

O�N2M� to construct E and O�N3� to compute E‡ and �E�.
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We then have

L��� = E + e1����� − d�* �58�

and, with the help of Proposition 3, compute

�L���� = �E��I + d����� − d�*� = �E��1 + ����� − d�*d� = �E�����*d , �59�

which yields the following
Proposition 14:

�
�� − �1�	
i=2

N

�̃i��i�,	
i=1

N

�i��i��
A

= �E�����*d , �60�

where E and d are defined as above.
Remark 15: If i	1, then,

��E��*d,�̃i� = �E���,�̃i�*d = �E�E�i, · �*d = 0, �61�

since d is orthogonal to E�i , · �, which is row number i of E. Thus, the function (60) is orthogonal
to �̃i for i	1. The same property will hold when the operators T, V, and W are present in the
antisymmetric inner product, as described in the following sections.

B. Antisymmetric inner product with �„�−�1… and „T and/or V… present

To compute antisymmetric inner products involving operators, we will modify formulas from
Sec. III. The first �trivial� modification is to denote the variable of integration in those formulas by
��, so as not to confuse it with the variable � in 
��−�1�. Next, we replace �L� with �L���� given
by �59�. Using �58�, we can express

L���−1 = �E + e1����� − d�*�−1 = ��E�I + d�����

1�E

= �E+ d���

�

�

1 �360.66339481 Tm
(�)Tj
/F6 1 Tf
6.9846 0 0 6.9846 334.9453.184.9166 Tm
0.02 Tc
(−1)Tj
9.9781 Tf
0.352Tf
0.3529 0 TD
(346 T9459481 Tm
0 Tc
(=)Tj
EF6 1 Tf
6.9846 0 0 6.9846 334.9466 889.9166 Tm
0.02 Tc
(−1)Tj
9.978 0 0 9.978 161.6471 19559481 Tm
0 Tc
(=)Tj
.4430p2/F14 1 1.053108 T65978 Tj
/F4 1 Tf
0.333 0  TD
(�)Tjf
9.978 0 0624430p2/F14 1 1.039D
0 Tc
(given/F6 1 Tf
6.984-39.246 38 T8401(,)-33)]TJ
/-457-311.9457-Sherman–Morrisson.9457-formula/F6 1 Tf
0 0 116.126D
(58)Tj�F4 1 Tf
0.333 0 TD
(58)T[(see,.9457-e.g.,.9457-Ref./F6 1 rg
3.3046 30TD
(�)Tj
23 0 0 0 k
0.352 TD9
/F6 1 Tanf
9.978 0 0 9.9rg
1.3329 739D
(�)Tj
/F6 1 Tf
0.333 0 TD
(58)TjB54430p2/F14 1 1.m
0D
(�)Tj
/F4 1 Tf
0 0 0 1 k
0.333 06TD
[(.)-31in.944 TD(Appendix.9457-B/F6 1 Tf
0 0 15.92338.5692 �F4 1 Tf
0.333 0 TD
(58)T[(,.9457-)-332.9457-311n.9457-have/F14 1 Tf
-5.4402678 25966 8915L)Tj
/F6 1 Tf
0.6029 0 TD
(�)Tj
/F8 1 Tf
9.978 0 2.7694 9.978 142.7089 3625 299.174.9)Tj
/F6 1 Tf
9.978 0 0 9.978 148.4594 1964 299.174.9)Tj
/F6 1 Tf
6.9846 0 0 6.9846 193.4499 31739403.1427.02 Tc
(−1)Tj
9.978 0 0 9.978 258.7007.4204 299.174.9=22 368 2 299.174.9 + 7398d��� � d�



�
�� − �1�	
i=2

N

�̃i��i�,�T + V�	
i=1

N

�i��i��
A

�66�

is equal to

�E�
N!
�����*�d� �T* + V*����*�̃d�� −� �T* + V*� � �

*� T

˜d

�

�

+VT *

� V

* � ��

*



1

2

�E�
N!
�2�����*dWP��*�̃���� − ����*WP��̃�*d����� + ����*�d� �*�̃WP��*�̃�

− �*WP��̃�*��̃d�� − 2� �̃WP��*�̃��*d − �̃�*WP��̃�*d�d���� , �72�

which can be computed with total cost O�N3+N2MP�.
Proposition 20: When E has rank deficiency of 1, (71) is equal to

1

�E‡�N!
������*dWP��*ṽ1ũ1

*�̃����� d



Substituting t=s / �−�� for ��0 into �75� and dividing by −�, one has

� 1
s

− �
p=1

L
wp

− �
exp�− �p

− �
s�� �

�

− �
, �76�

valid on the interval s� �−� ,��. In Fourier coordinates, we can express

G� =
1

2�2��i
2 − �

, �77�

from which we see that �G��=1 / �−��. Since the denominator is at least −�	0, we can substitute
into �76� and obtain

�G� − �
p=1

L
wp

− �
e−�p �

i=1

N

exp�− 2�2�p

− �
�i

2�� �
�

− �
= ��G�� . �78�

Thus, we obtain an approximation of G� with relative error � in norm using L terms, with L
independent of N and �. To construct G� as an integral operator in spatial coordinates, we apply
the inverse Fourier transform to obtain

G� 
�
p=1

L

�
i=1

N

Fri

p , �79�

where the convolution operator Fri

p , which depends implicitly on �, is defined by

Fri

p f��1, . . . ,�N� = � wp

− �e�p
�1/N� − �

2��p
�3/2

�� exp�− − �

2�p
�ri − r��2� f��1, . . . ,�i−1,�r�,, i�,�i+1, . . . ,�N�dr�. �80�

This construction has a theoretical value since it has proved the following theorem.
Theorem 22: For any �	0, ��0,and N, the N-particle Green’s function G � has a separated

representation with relative error in operator norm bounded by � using L=O��ln ��2�terms, with
L independent of

� and N.

B. Constructing the right-hand side vector b in „18…

In order to do a step in the iteration, we need to construct the right-hand side b in the normal
equations �15� in Sec. II B 2. Since A is an orthogonal projection, A and G� commute, and G� is
self-adjoint, the entry �18� is equal to

b�l���� = − s̃l�
m

r

sm�AG�
�� − �1�	
i=2

N

�̃i
l��i�,�V + W�	

i=1

N

�i
m��i�� . �81�

Substituting �79� in for G� and rearranging, we have

b�l���� = − s̃l�
m

r

sm�
p=1

L �AFr1

p 
�� − �1�	
i=2

N

Fri

p �̃i
l��i�,�V + W�	

i=1

N

�i
m��i�� . �82�

The computation is of the same form for each value of the indices l, m, and p, so we can consider
a single term and suppress the indices.

To evaluate a single term �AFr1

��−�1�	i=2Fri

�̃i��i� , �V+W�	i=1�i��i��, we use the formu-
las in Propositions 16–21 in Secs. IV B and IV C, with two modifications. The first modification

is that �̃ is replaced with F�̃ throughout. This replacement causes no structural change to the
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formulas; it just changes the inputs. The second modification is caused by the replacement of

��−�1� by Fr1


��−�1�. The first row of L��� in �56� becomes F����*, which makes �L����
= �E�F����*d. Similarly, �65� becomes

���,��� = �̃���� − d
F����*�̃���� − F
�� − ���

F����*d
. �83�

Tracking F through the formulas, we find that all we need to do is to modify the formulas in Secs.
IV B and IV C by applying F to the final result.

C. Constructing the matrix A in „17…

In this section, we construct the kernels in �17� for the normal equations �15� using the same
ideas in Sec. IV. We fix l and l� and define

K��,��� =
A�l,l����,���

s̃ls̃l�
, �84�

w���� = ��̃2
l ���� ¯ �̃N

l �����*, �85�

y�� = ��

˜2
l���̄ � ˜ N

ll����

*, � 85 14� =
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O�r2LN2�N + MP�� . �91�

The operation count to solve the normal equations �15� by applying the matrix of integral opera-
tors A S times is

O�r2SN�N + M�� . �92�

As we loop through the directions, we may reuse several quantities, so the total cost of the
construction is less than N



�̃2 = E2
‡F�̃2 = �E1

‡ + fg*��F�̃1 + e1��̂1 − �̃1�� = �̃1 + d1��̂1 − �̃1� + fg*F�̃1 + fg*e1��̂1 − �̃1�

�96�

at cost O�NM�. It is insufficient to just update �̃2 in this way, since it would ste cost

�˜



�
l=1

r

sl	
i=1

N

��i
l − tgi

l� . �A4�



�A1
‡� = − �1/�de��A‡� . �B4�

�2� If ��0, f =0, and g=0, then rank�A1�=rank�A� and

A1
† = A† − �−1de*, �B5�

A1
� = A�, �B6�

�A1
‡� = �A‡��−1. �B7�

�3� If f =0 and g�0, then rank�A1�=rank�A� and

A1
† = A† − �−1d�gd*A† + �̄e*� + �−1g�− de* + �d*A†� , �B8�

A1
� = A� −

������ − ����g + �gd

g�����
g*A�, �B9�

�A1
‡� = �A‡�

��̄ − �����2 + ��

������
. �B10�

�4� If f �0 and g=0, then rank�A1�=rank�A� and

A1
† = A† − �−1�fA†e + �̄d�e* + �−1�− ed + �A†e�f*, �B11�

A1
� = A� − A�f

������� − ����f + �̄fe�*

f �����
, �B12�

�A1
‡� = �A‡�

�� − �̄����2 + �̄�

������
. �B13�

�5� If f �0 and g�0, then rank�A1�=rank�A�+1 and

A1
† = A† − f−1df* + g−1g�− e* + �f−1f*� , �B14�

A1
� = A� − �1/�gf�gf*, �B15�

�A1
‡� = �A‡��1 + �g−1f−1 − �1/�gf��g*A�f� , �B16�

The cost to compute A1
†, A1

�, and �A1
‡� is O�N2�.

Proof: The overall method, update rules for rank�A1�, and update rules for A1
† are taken from

Ref. 4, which also lists the useful properties

c*d = e*b = � − 1, b*f = f , c*g = g, d*g = 0, e*f = 0,

A†Ad = d, AA†e = e, A*f = A†f = 0, Ag = �A†�*g = 0. �B17�

They give update rules for the row and column spans of A1, which we translate into update rules
for A�. The cases �B3�, �B6�, and �B15� follow directly. Corresponding to �B9�, their update rule
is that the row span of A� should be extended �orthogonally� by d and then reduced by projecting
orthogonal to p. We translate this into a �Householder� reflection of the vector g into a vector in
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the span of d and g perpendicular to p. Adjusting these vectors to have equal norm and real inner

product yields the reflection of the vector �̄��g to −�� � �gd− �̄g�, resulting in

�I −
2��̄��g + ����gd − �̄g����̄��g + ����gd − �̄g��*

���̄��g + ����gd − �̄g���2
�A�, �B18�

which simplifies to �B9�. To obtain �B12�, we use the same process, extending the column span by
e and then projecting orthogonal to q by a reflection of ���f to −�� � �fe−�f�.

To derive the update rules for �A1
‡�, first add the update rules for A1

† and A1
�



When A and A1 are nonsingular, �B5� is the Sherman–Morrisson formula �see, e.g., Ref. 23�.
For our application, we need the singular vectors in A� rather than A� itself, but then only when
rank�A���3. These singular vectors can be extracted by a simple modification of the power
method with deflation.
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