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discontinuities in the subsurface material without specifying which quantities are discontinuous or by 
how much they jump [8, 9]. As such they go back to Hagedoorn [10] and beyond (see [11] and the recent 
review Stolt and Weglein [12]). 

At about the same time as early migration schemes were being developed a precise mathematical theory 
to invert quantum physical scattering data was proposed by Gelfand and Levitan [13] and Marchenko 
[ 14] for one-dimensional problems. Since these beginnings two dissimilar lines of research have developed 
which are now converging. On the one hand there is the purely one-dimensional inversion generalized to 
obtain more than one parameter: see Stickler [15], who follows an approach of Deift and Trubowitz [16], 
and Coen [17]. Generalization to higher dimensions is possible to some extent, and, at the cost of  
linearization, to a much greater extent: see Cohen and Bleistein [18] and Bleistein and Cohen [19]. On 
the other hand, after the tradition of seismic migration started by Claerbout [20, 21], Stolt [22] introduced 
a method of  migration by Fourier transforms, and Clayton and Stolt [23] developed a related method of  
inverting seismic data for more than one parameter. Integral approaches to migration were described by 
French [24, 25] and Schneider [26]. Norton [27] inverted for two parameters simultaneously by using 
single frequency data for source-receiver pairs having just two scattering angles. Multiparameter inversion 
in the context of single frequency diffraction tomography was proposed by Devaney [28]. A linearized 
inverse problem with constant background parameters was treated by Boyse and Keller [29]. 

This paper differs in a number of ways from previous work. First, we allow spatially varying background 
parameters (S1 1 1 rg0.43 Tc0 T parameters scattering work. transfor(work. )((S1 1 1 rg0.429.60 Tm1 1 1 rg00 TD1 1 1 rg0.78 TcTc0 Tw(possible ) Tj39.84 0 alm12.48 0 T12 0 TD1 1 1 rg0.66(This ) Tj21rbitra2.48 0 T0.78 Tc0 Tw(and ) T Tj24.96 0 2 0 TD1 1 1 rg0.66 TcTc0 Tw(and ) Tj19(was ) Tj19.figur80 49rg0.62630.65 Tc0 Tw(quantities ) Tj46Se19.d96 0 TD1 1 1 rg0rg416Tw(converging. ) T.04 0 TD1 1 1 rg0.84 c0 Tw(more ) Tj25This ) Tj21ctu1 1 1 rg1 1 1 rg0.87 Tc0 Tw4(was ) Tj19mput80 493.92 T5 1 1 rg0.58 Tc0 Tw24(was ) Tj1 rg0.66 T1 1 1 rg0.42 Tc0 .48 rTc0 Twer 1 11 1 rg0 0.43 Tc0 T 

without more associrg0.69 Tc1 1 1 rg0rg403Tw(jump ) Tj26.1ameters o f  a n d  [18] a n d  a n d  m o r e  a s 0 . 6 7  T c  0   0  T D  1  1  1  r g  0 . 6 6 ( T h i s  )  T j  2  2 5 . 2 0  0  T D  1  1  1  r g  0 . 6 8  T c  0  t i e s  
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In Section 4 we apply the inversion procedure for the generalized Radon transform to solve the linearized 
inverse scattering problem for acoustic media. We solve for perturbations in two parameters--specific 
volume and compressibility, or rather the logarithmic derivatives of  these quantities. The reconstruction 
procedure calls for asymptotic information about the Green's function of the background medium, 
specifically its phase (travel time) and amplitude, which opens up the possibility of computing by ray 
methods. This seems particularly advantageous in large-scale problems in three space dimensions. The 
formulas for inversion are quite simple and lend themselves to robust practical implementations. We 
demonstrate this with a numerical example. We describe our experiences when the algorithm is applied 
to scalar data generated by a finite-difference code with a fairly complicated model. 

In Section 5 we apply the inversion procedure for the generalized Radon transform of Section 3 to 
solve the linearized inverse problem for elastic media. We solve for perturbations in different parameters 
treating separately P-to-P, P-to-S, S-to-P, and S- to-S  data. It turns out that one may invert using subsets 
of  the data, or all of  it together. We describe the procedures for inversion of the individual scattering 
modes and the combinations of  the parameters that can be recovered. We do not treat the problem of  
separating the different modes of  scattering in the elastic case in detail, though our inversion procedure 
itself accomplishes this at least partially. First, it requires an ordinary projection of the multicomponent 
data on the unit vectors associated with ray directions within the background medium. We note that this 
usually is the foundation of  algorithms for P and S separation (see [32], for example). Second, generalized 
backprojection itself acts as a filter and will tend to suppress modes which are not being used. 

In Section 6 we describe modifications to our scheme which allow us to use the Kirchhoff approximation 
as an approximation for the forward problem. The difference between the images of  parameters obtained 
under the assumption of the Kirchhoff approximation and the Born approximation appears to be equivalent 
to the effect of a spatial filter and does not affect the recovery of the parameters as such. Recently, Bleistein 
[33] proposed a modification of  the algorithms described in Beylkin [4] and Miller et al. [5, 6]. The 
modification is based upon the use of the Kirchhoff instead of the Born approximation in the forward 
problem and results in reconstruction of  the reflection coefficient as a function of angle. Parsons [34] 
used this scheme where he linearized the reflection coefficient to obtain the parameters, In Section 6 we 
also discuss the differences between our approach and those in [33] and [34]. 

The method we propose has advantages over other approaches suggested recently. Specifically, the 
so-called nonlinear inversions proposed by a number of authors (Tarantola [35], Mora [36]) in fact iterate 
the solution of the linearized inverse problem. This, of  course, can be done with our method as well. So 
it makes sense to compare our method with a single step of such an iterative algorithm. One can see that 
our method allows us to quantify the size of  the recovered discontinuities, while, as far as we know, the 
methods mentioned above would require several iterations to achieve the same result. 

In FirsTc0 Tw(an ) Tj13.44 0 TD1 to the 
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In implementing this procedure the sums or integrals involved in the inverse Radon transform of  step 
3 and the generalized linear inverse of  step 4 are combined so that the constant 0 gathers mentioned in 
step 2 are never explicitly formed. In fact the data may be read just once and in an arbitrary order. 

1. Linearized scattering for acoustics 

An acoustic medium (a nonhomogeneous  fluid) is characterized by specific volume o- (reciprocal of  
density) and compressibility (reciprocal o f  bulk modulus) K = tr/c 2, where c is the sound speed. The 

pressure p in the absence 
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Here and throughout the paper we will consider the most singular term of the integral representations 
of the singly scattered fields. However, by making this approximation in the direct problem we are not 
making an additional approximation with respect to the inverse problem. This is because we proceed to 
solve the inverse problem modulo a smooth error. To obtain such a solution it is sufficient to consider only 
the most singular term in the direct problem. Indeed, only this term contributes to the most singular term 
that is recovered. This observation is discussed in greater detail in Appendix B. 
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So far our analysis has concerned the direct scattering problem. It is our goal, however, to consider 
(1.21) not as an expression for U(s ,  r, t) but as an integral equation for f, where U is known. We recall 
that U is the scattered field and does not contain the unperturbed field due to the background material 
itself. This scattered field should be separated from the full response, which usually is a straightforward 
matter and is not considered here. 

The integral in (1.21) has the form of a generalized Radon transform of the kind considered in [2, 3] 
(see also Section 3 of  this paper) and so we can use the inversion formulas derived there to solve the 
integral equation for f (x ,  0) for many fixed values of  0. Using the form of  the amplitude radiation pattern 
in (1.20) we may then find K'/K ° and ~r'/tr ° separately. Since we have f ( x ,  0) for many values of 0 this 
latter step can be treated as a generalized linear inversion. In practice we perform this generalized linear 
inversion and the inversion of  the generalized Radon transform together (see Section 3). Inversion of 
(1.21) is carried out in Section 4. 

In the next section we derive formulas analogous to (1.21) for elastic wave scattering. The inversion of  
these formulas is carried out in Section 5. 

2. Linearized scattering for elastic solid 

Wave propagation in an inhomogeneous anisotropic elastic solid in the absence of sources is 
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A A 
Let Gkt = Gkt(X, r, t) satisfy the following equations 

0 2  A 0 ^ ^ 
p O t G k l -  (¢lrapqGkp, q),m = 8 k l S ( t ) 8 ( X  -- r), Gktlt<o = 0 ,  (2.9-2.10) 

where r denotes the receiver position. 
Then (~kl is the Green's function for eq. (2.8) and we arrive at 

- f o  [p O~Gj~ 

Isotropic solid. As we mentioned before (see also Appendix B) for inversion of the most singular part of 
the perturbation it is sufficient to consider the most singular term of the integral representation of the 
singly scattered field (2.12), This term can be obtained by using the most singular part of the Green's 
functions in (2.6) and (2.9). Thus, (~jt is a superposition of several terms like 

(~j, ~- ,,~j,8 ( t - ~), (2.13) 

one for P waves and possibly two for S. On substituting (2.13) in (2.6) we arrive at a set of equations for 
the phase 4; and vector amplitudes ,4~. In the general anisotropic case (see e.g. Burridge [37]) the phase 
function ~ is determined by the condition 

det(p° Slp - c °,,pq~.,,~.q) = 0, (2.14) 

and the amplitude of the main term satisfies 

(p°8,p - c°,,,q ~.,.q~.q),4j, = 0, (2.15) 

(c°,,,q.4jl,3,jp~b.q),., = 0, no summation over j. (2.16) 

The most singular part of the Green's function is a sum of terms of the form in (2.13) where phases and 
amplitudes satisfy (2.14)-(2.16). The same procedure applies to the Green's function in (2.9)-(2.10). 

For an isotropic solid the leading singular term of the Green's functions in (2.6)-(2.7) and (2.9)-(2.10) 
can be written in the form 

Gjl = Gj~ + (~t, Gk, = G~+ (~s,, (2.17-2.18) 

where 

= Gkl = AktS(t  -- ~s) .  

The leading singular terms of the spatial derivatives of the Green's functions are as follows 

" P  __ ~ P  " P  p ~ " S  " S  t Gj,.p - -q~,pA~,8 (t - ~P), "s G~t,p -#b.pA~,8 ( t- ~s), 
^p A A ~ Gkt.p=_¢~,g,~8,(t ~J,), ^s s s, s - Gkt, p =-¢,pAkt8 (t-d:). 

(2.19-2.22) 

(2.23-2.24) 

(2.25-2.26) 
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P-to-Pscat ter ing.  T h e  amplitudes in formula (2.34) can be written in the form ,4~p apAj" p "p and,4~ "P'~P 
where it follows from (2.29) and (2.30) that ,4f and .4~' satisfy the equations 
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The behavior of  the operators F,, is determined by their phase and amplitude in the neighborhood of  
the set C~, = {(to, s, r, x, x) ~ R+ x OD x dD x D x D}, the projection of which on D x D is the diagonal. See 
part 3 of  Appendix B for more details. Our next step is to expand the phase of  the Fourier integral 
operator in (3.13) as a Taylor series around the point of  reconstruction y. We retain only the first term 
of  the Taylor series to obtain the most singular term of  the operator F,,, 

~b(x, ~, ~) -~b(y ,  o~, ~t)~-(~p.~(s,y)+dp.j(y, r))(xj-yj) 

o9 - ~  a~ ) ( x j -  yj). (3.15) 

We also expand the weights A(x, ~, ~) and w~(cos O(x, J,  t~)) at the point y and keep only the zero 
order term. Proof  that this procedure yields the most singular term follows closely the proof  in [2, 3, 4] 
and is omitted here. On denoting the most singular part of the operator F m by F ° we have 

( V ° f ) ( y )  =_~ dx to 2 dto do~ dt~ B(y, & ~) 
" i T  0 

] E f~(x) g tm(d 'k)exp ltO .--7~..xC~j"l" ~j (xj-yj)  , (3.16) 
I= i,2,3 

where m = 1, 2, 3 and 

&m(~" ~)= W,(~" ~) Wm(~" ~) ,  l, m = 1 ,2 ,3 .  (3.17) 

Further evaluation of  (3.16) requires a new system of coordinates at the point y which we introduce 
below. Let us consider the angle 0 = O(y, s, r) defined by cos 0 = ~j~j. The angle 0 varies in some subset 
of  [0, ~-] which we denote by 17,o. We also consider the unit vector v = (v~, v2, v3) in the direction of  the 
vector (1/~(y))~j  + (1/~(y))~j,  

( 1  1 . \ / 1 1  . 1 1 v~= - ~  ~ + - ~ a ~ } /  - ~  a+-~y) a , j = 1 , 2 , 3 ,  (3.18) 

and 

Here 

1 . 1 

A(y) = I~(y) - ~(y)l/(~(y) ~(y))l/2, 

(3.19) 

(3.20) 

is a nonnegative dimensionless parameter. I f  ~ (y)=  ~(y) then A(y)= O. 
The unit vector v varies over & = Sv(0), a subset of  the unit sphere S 2. This subset, in general, depends 

on the angle 0. Given v and 0 we can find 
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4. Asymptotic solution of linearized inverse problem for acoustics 

To see the connection of  the linearised inverse problem for acoustics with the inversion of  the generalized 
Radon transform as defined in (3.1) we set 

f =  (K'/K °, O"/O "°, 0), 

wl(cosO)=cos  t-lO, 1=1,2 ,  

~(x)  = ~(x)  = c°(x) ,  

A (x ,  s, r) = ,,°(x) ,~(s, x) •(x, r). 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

Then, 
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Fig. 4. The compressibility model showing relative perturbation with respect to the background medium. 

The algorithm in its two-dimensional form was applied and the results are shown in Figs. 5 and 6. 
Because of  numerical dispersion and the shape of  the incident wavelet, we obtain only an approximation 
of  the quantities tr'/O-o and K'/K0 rather than these quantities themselves. Thus, at a step discontinuity of  
perturbed specific volume and compressibility we see plotted not a step discontinuity but a smoothed 

R 

o. 
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P-to-S scattering. Using the notations of  Section 2 and writing Ujk = U~k s, 0 = O Ps we set 

Cs,o , 
\ p  /~ cp / 

wl(cos 0) = sin 0 (2 cos 0) t-~, l = 1, 2, (5.12) 

~(x) = cp(x), ~(x) = Cs(X), (5.13-5.14) 

A(x, s, r) = Ajk(X, s, r) = p°(X) .47(s, X) "s ^~ Akr(Y, r) fit, s. (5.15) 

We compute 

llolo 
f~'t(Y)=~Ep°(Y) D ds D d r B ( y ' s ' r )  J (Y 'S)J(Y ' r )  

~ ~7( s ,  y) --,~t,!y, r) ~ f s  ~ ( s ,  r, t) , m = 1, 2, (5.16) 
• sin 0 c o s " - '  tl i i~ . ( s  ' Y) l l=l lmPs(y  ' r)ll = ,=,<,.5,r) 

where II~,PII ~ is defined in (5.7) and 

II~,'Sll == 2 (34,,~ffs) ~. (5.17) 
k = 1 ,2 ,3  
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Solving the system (3.35) with aim given by (5.36) and f~ t  by (5.33) yields the perturbations of the 
parameters in (5.29). 

6. The Kirchhoff approximation 

It is often reasonable to assume that the discontinuities in the parameters are located on smooth surfaces. 
While the Born approximation is useful, the Kirchhoff approximation might then be a better alternative. 
Bleistein [33] has proposed a modification of the algorithms described in [4-6] using the Kirchhoff 
approximation in the forward problem instead of the Born. Applying the method of stationary phase, he 
justified the modification of the inversion operator for the case when the location of source or receiver 
is a function of the other, as for example in a common midpoint gather or a shot gather. He also proposed 
to perform inversion twice and then recover the angle at the specular point from the ratio of magnitudes 
of the two images (at selected points). This results in a reconstruction of the reflection coefficient as a 
function of angle. Parsons [34] has used this scheme with the reflection coefficient linearized. 

While 6D1 1 1 rg0 Tc0 Tw([33] ) Te1 1 1 rg0 ,ts). scheme 
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where 0s is the angle between the normal and the ray connecting the source with the point x. At the 
specular point (6.3) becomes 

n(x, ½0) =f(x,  0) /4  cos 2 ½0, (6.4) 

where 0 is the angle between the rays connecting source and receiver to the point x. 
We also observe that at the specular point 

Nx" V~b(x, s, r) = IVqb(x, s, r)l = (2 cos ½0)/c(x), (6.5) 

where c(x) is the velocity. 
We now rewrite (6.1) as a volume integral using the singular function y(x)  of  the surface: 

U(s, r, to) = ito fo  dx y(x)  R(x, 0s) ,4(s, x) .~(x, r) Nx" V~b(x, s, r) e i~°4'( . . . . .  ), (6.6) 

and compare it with (1.21) and (2.49) rewritten in the frequency domain. In view of  (6.4) and (6.5) one 
can see that an extra factor ito is present in (1.21) whereas an extra angular dependent factor is present 
in (6.6). We will show that these are the only differences that should be taken into account in the inversion 
formulas. Bleistein's modification [33] amounts precisely to such a change in the inversion operator and 
he verified this using the method of stationary phase when the locations of  sources and receivers are 
functions of  one parameter. 

For multiple sources and receivers we outline a proof, based on the theory of  pseudodifferential 
operators, and describe it by comparison with the derivation in Section 3 so that only the differences need 
to be described in detail. To justify our derivation we use the so-called microlocalization technique which 
will allow us to set the angle in the amplitude of  a pseudodifferential operator to be that at a specular 
point and will guarantee that the dropped terms are smooth. 

Assuming small changes in parameters across the interface F we write (6.3) as 

1 
- - -  ~ f l(x) wt(cos 20s(x, s, r)), (6.7) R(x, 0~) 4 COS 2 0 s 1=1,2,3 

where the angle-dependent coefficients wt are the same as for the Born approximation. 
We replace (3.11) by V(s, r, w)=ito U(s, r, to) and using (6.7) obtain 

V(s, r, t o ) = - t o 2  • f dxT(x) f t (x)  wt(cos20~(x, s, r)) 
I = 1,2,3 ,It) 

• m(x, s, r) Nx" V~b(x, s, r) ei,O4~ ( . . . . .  ). 
4 C-'--O-S -i 0s (x--'-~ s, r) (6.8) 

Using (3.7) or (3.10) as the definition of  the inversion operator and setting ~(y) = ~(y) = c(y) we proceed 
exactly as in Section 3 to obtain instead of  (3.16) the equation 

( F ° f ) ( y )  = ~--~ dx to2 dto dr tB(y ,a ,~)4cos20 , (y ,a ,~  ) 

[. 1 , : ,y) . ] 
E T(x) f t (x )  g,,~ exp l_oCTSS~_~(dj+%)(xj-yj) , (6.9) 

/=  1,2,3 

where m = 1, 2, 3 and 

gtm(~" ~,208) = w~(cos20~(y, c~, c~)) w,,(t~" c~), 1, m = 1,2,3.  (6.10) 







G. Beylkin, R. Burridge / Linearized inverse scattering 41 

The condition number for Hilbert matrices grows exponentially with the size of the matrix. Fortunately, 
the matrix arm is only 2 x 2 for acoustic, and 3 x 3 for elastic scattering. As the numerical example of 
Section 4 demonstrates, for a reasonable range of [ 0 ,  0max],  both parameters can be reconstructed. 

W e  can find the solution explicitly: let e = 1 - ~  then from (7.2) we have 

all=e, a12=a21=e(2-e)/2, a22=e(e2-3e+3)/3. (7.3) 

Solving (3.35) with this matrix we obtain 

- 3  6 (e -2 )  6 ( ~ - 2 )  ,-est, - 12  -est- , (fl(Y))=4(e2"-~e+3) f~St(Y)+-":"~f~t(Y), (f2(Y)) = -e5 J1 ~Y)+"~J~ (Y). (7.4) 

It is easy to observe that 

(fl(Y)) + (fE(y)) = ~ f~t(y) + ~6~2 f~St(y), (7.5) 

4e 2 - 18e + 24 f~t(y ) + ~ f ~ S t ( y ) .  (7.6) 
(A(Y))- (f2(Y)) e3 

For small e the right-hand side of (7.5) can be shown to be O(1) as e ~0,  so that (fl(y))+(f2(y)) can be 
recovered but (~(Y))-(f2(Y)) in (7.6) cannot. It is reasonable to expect degradation of the image of the 
second combination as e approaches zero. 

Let us clarify the physical meaning of these combinations. Since the relative perturbations with respect 
to the background medium are assumed to be small, using (4.1) we can write 

Kt  ort 
- d  log(for) -~ ~--6 +--6, (7.7) 

K O r 

for (f~(Y))+(f2(Y)), and 

- d  log Ko Oro, (7.8) 

for (f2(Y))- (f2(Y)). We have - d  -d +--6, Burridge Kt matrix matrix a p p r o a c h T j  1  0 3 4 . 5 6  0  T D  1  3 9 7 . 4  r g l y 4 0 5 . 4 2  T c  0  T w  ( t h e  )  T j . 0 4  0  T D  1  1 A t 1  8 6 . 6 4  3  T c c  4 2 4  0  T D   r g  0 . 2 8 8 8 0 j  3 3 . 8 4  c D  1  1  1  r g  3 7 T c  0  T w  ( O  )  T j  3 . 8 4  0  T D  1  1 A  1  r g  0 . 4 3  T c  0  T w  ( ~ - - 6  )  T T w  2 9 .  0  T D  1  1  1 r g  0 b i n a t i o n s 1  8 6 . i . 4 0  0  2 -  O  2 - e  1  8 6 . 6 4  3 7  r g  0  0 a 2 1 = e ( 2 - e  1  8 6 . 6 4  3 7 e  degradation size relatived f o r  2 - e  1  8 6 . 6 4  1 1 . 7 6  0  T D  1  1  1  r g  0 . 2 4  T c  0  T w  ( b e  )  T j  d  approach17.7 0 TD1 1 1 rg0.34 Tc0 Tw(be ) Tjd17.52j33.84 ver1 1 1 rg4binations1 86.i.40 0.80 Tc0 TwAi.e1 rg6com TcT90 Tw(combinati4) Tj 0 TDlack 1 rg0.31 4 10 Tw(a12=a21=) Tj 0 TD1 1 1 rg0.42 Tj13.68 0 TD1 1 0.08 64 0 TDource-1 0e3976.id0.4/F2 9.84 Tf0.32 Tc TTw29. 0 TDpai 1 1 rg8 Tc0 Tw(find ) Tj19.92 0 TD1 1 1 rg0.34 Tc0 Tw(this ) (2-e 1 86.64 3780.8 Tc0 Tw(the ) Tj43.687Tj33TD1ularcit ,3.46 Tc0 Tw(are ) Tj22.0)/3. 1 flTD1 1 1 rg4larcit ,3.46 Tc0 T)) rg0 Tc0 Tw((7.2g1 thmrg3.46 Tc0 T)) rg0 Tc 1 rg6-6, lccord Tw16ti4the are m rg 
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Fig. 7. Reconstruction of  the acoustic impedance. 
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and the worst 

(A (Y)) - 2(f2(y)) + (A(Y)). 

To clarify the physical meaning of these combinations, we write using (5.1) 

dlog(A+2/~)p ~Ao+2/ o t- 4 I°+2/~°'2/~---~' (7.9) 

for the first combination, 

c 2 A' 2/z' (7.10) d log(A +2/x) - 4  c--~p d log/x -~ A°+2/z o A°+2/~ o' 

for the second, and 

d log(A+2/z ) -2d logp~Ao+2/~  o 2 + A°+2/~°2/~' (7.11) 

for the third. 
The first parameter is the logarithmic derivative of the P-wave impedance as one would expect. The 

other two parameters do not have specific names and are identified by formulas (7.10) and (7.11). 
In general, the properties of the 

Concluding remarks 

To summarize, we have demonstrated for acoustics and for elasticity how to solve the linearized inverse 
scattering problem asymptotically. The same can be done for Maxwell's equations. In fact any first order 
symmetric hyperbolic system arising in mathematical physics, of which these are particular examples, can 
be treated similarly (see [39]). 
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Appendix A 

G. Beylkin, R. Burridge / Linearized inverse scattering 

In this Appendix we show that the singly scattered field can be written in the form (1.10) for acoustic 
media and 
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which is the integral representation of the singly scattered field. The Fourier transform of this representation 
should be compared with (1.10). 

The elastic singly scattered field in the presence o f  a boundary 

Let Gjt = Gjt(s, x, to) be the incident field, which solves the following boundary value problem 

0 2 " 0 " 0 ~ s 
p to Gjl+(ClmpqGjp, q ) . m = O ,  c l m m G j p . q n m = - S f l S o o .  ( A . 1 2 - 1 3 )  

Here Gjt is the displacement in the /-direction at x due to a point force in the j-direction at s on the 
boundary. Within the single scattering approximation the scattered field Ujt = Uj~(s, x, to) is the solution 
of the boundary value problem 

fl o to2 Uj I o " o + (C,mpq ~ . . q ) . m  - P ' t o 2 G ,  t ' " 
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Definition 2. A distribution u is C °o in the conic open subset of 12 x (Rn\{0}) if it is C °~ in a conic 
neighborhood of  every point of  the subset. 

Definition 3. The complement in 12 x (R"\{0}) of  the union of all conic open sets in which the distribution 
is C OO is called the wave-front set WF(u) of  the distribution u. 

Consider a pseudoditierential operator A 

(Au)(x)  = f d~a(x, ~) a(~) e i~'x, 

where a(x, ~) is the standard symbol of the operator A. 

(D.2) 

Definition 4. A pseudodifferential operator A i n /2  is regularizing in the conic neighborhood Uo x K ° of 
a point (Xo, ~:o)e 12 x R" if there is a function g ~ C~(12) equal to one in Uo such that for every M >1 0 
and every pair of multi-indices a and/3 there is a constant CM,~,~ such that 

sup lO~d~[g(x)a(x, ¢)]1 <~ cM, (D.3) 

Definition 5. A pseudodifferential operator A in 12 is regularizing in a conic open subset of 12 x (R"\{0}) 
if it is regularizing in a conic neighborhood of  every point of the subset. 

Definition 6. The complement in O x(R"\{0})  of  the union of all conic open sets in which the 
pseudodifferential operator A is regularizing is called the microsupport of A and is denoted by tzsupp A. 

Theorem. Let A be a properly supported pseudodifferential operator in 12 and u a distribution in 12. Then 

WF(Au) ~ WF(u)  n / z supp  A. (D.4) 

It follows from (D.4) that if WF(u)c~/zsupp A is empty then Au ~ C°°(O). 
In linearized inverse problems which use the Kirchhoff approximation we choose, following Bieistein 

[33], to reconstruct the singular function 7(x) of  the smooth surface F which is defined by 

fa" y(x) f (x)  dx = frf(Cr ) dot, (D.5) 

where f spans an appropriate class of test functions. 
Let the unit vector Nx be normal to the surface at the point x. Then 

WF(y)  ={(x, aNx):  x E F  and A ~ 0 e  R}. (D.6) 
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Glossary 

Symbol  

3 1 ,  a2 

at.,(y) 

~(s, x) 
, i (x ,  r) 
B(y,  s, r) = B(y,  t~, t~) 

C 

cO = ~ / 0 - ° / K O  

ctmeq = ct,.vq (x)  
D 
OD 

Eo 
e~ 

f ( x )  = ( f , ( x ) , A ( x ) , A ( x )  ) 
f2t (y)  

F,,,, F ° 

glm = WlWm 

= G(x,  r, t) 

= 8 ( s ,  x, t) 

J 

,J 

J = J(y,  s) or J(y ,  r) 

P 
P 

o r  p 
Pp 

PS 

r 

Re 
R 
a*.. 

S 

3 o r ~  
S 2 
s 

o r  s 
sP  

s s  

t 
Tm 
u, = Ut( X, t) 
u = U(x,  s, t) 
~k(s, r, t) 

V 
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First occurrence 

(2.52) 
(3.35) 
(1.11) 
(1.11) 
(3.7) 
(1.1) 
(1.1) 
(2.1) 
(1.4) 
(1.4) 
(3.18) 
(3.21) 
(3.1) 
(3.33) 
(3.13), (3.16) 
(3.17) 
(1.7) 
(1.4) 
(1.1) 
(1.1) 
(3.7) 
(1.1), (3.3o) 
(2.17) 
(2.33) 
(2.33) 
(1.7) 
(3.14) 
(3.1) 
(3.7) 
(1.1) 
(3.10) 
(3.10) 
(2.17) 
(2.33) 
(2.33) 
(1.1) 
(3.32) 
(2.1) 
(1.6) 
(2.8) 

(3.6) 

Definition 

scalar coefficients in S polarization 
matrix in generalized linear inversion 
amplitude of (~ 
amplitude of t~ 
adjustable weighting function 
wave speed 
background wave speed 
elastic stiffness tensor at the point x 
domain in x-space 
boundary of D 
range of 






