
NONLINEAR APPROXIMATIONS FOR ELECTRONIC

STRUCTURE CALCULATIONS

G. BEYLKIN AND T. S. HAUT ∗

Abstract. We present a new method for electronic structure calculations
based on novel algorithms for nonlinear approximations. We maintain a func-
tional form for the spatial orbitals as a linear combination of products of de-
caying exponentials and spherical harmonics centered at the nuclear cusps. Al-
though such representations bare some resemblance to the classical Slater-type
orbitals, the complex-valued exponents in the representations are dynamically
optimized via recently developed algorithms, yielding highly accurate solutions
with guaranteed error bounds. These new algorithms make dynamic optimiza-
tion an effective way to combine the efficiency of Slater-type orbitals with the
adaptivity of modern multiresolution methods.

2

to optimize the exponents in Slater-type approximations for diatomic molecules.
Although such dynamic nonlinear optimization via traditional methods

3

can be expressed in terms of spherical harmonics (see Section 3.2) and, therefore,
these two representations are functionally equivalent. In Section 3.2 we describe
algorithms for converting between these two functional forms. We use one form
or another depending on efficiency considerations as is typical in pseudo-spectral
methods where the interpolating representation is more convenient for multiply-
ing functions, while the spectral representation is more convenient for computing
convolutions.

We develop a numerical calculus based on these functional representations. For
example, for any two functions φ1 (r) and φ2 (r) that are already in this functional
form, we develop algorithms to represent the product φ1 (r)φ2 (r) and the convolu-
tion ∆−1φ1 (r) in the same functional form and with a small number of parameters.
By casting the relevant electronic structure equations (e.g. the Hartree-Fock equa-
tions) in an integral form, we demonstrate that the functional forms in (1.1) and
(1.2) can be used to solve for the ground states via iteration (using the framework
developed in [18, 16, 17, 19]). The numerical calculus used within the iteration
framework allows us to efficiently build up highly efficient representations for the

4

Algorithm 1 Computing exponential representations

(1) Compute M singular vectors Hum = σmum of H = [fi+j]
N
i,j=0, m =

0, . . . ,M − 1, where σM < ǫ

(2) Form the M × M matrix U3 = U †
1U2 , where U = (u0 . . . uM−1), U1 =

U (0 : N − 1, 1 : M), and U2 = U (1 : N, 1 : M)
(3) Compute the M

5

the odd moments (approximately) vanish to sufficiently high order. We note that
this property naturally arises from application of Algorithm 1 and is not imposed
as an additional constraint.

Remark 2.1. Although Algorithm 1 suffices for computing exponential approxima-
tions when the approximation error ǫ is no smaller than ≈ 10−7 and f (r) is smooth
and decays rapidly (which is sufficient for many electronic structure calculations),
computing more accurate approximations using this algorithm may require quadru-
ple precision.

For this reason, one of the possible alternative formulations described in Section 6
involves the so-called reduction algorithm [20]. Specifically, if the function f(r)
is already a linear combination of N decaying exponentials, then the reduction
algorithm constructs another representation of the same form, but with a smaller
number M ≪ N of exponents. The basic idea behind this approach is that it is
straightforward to construct a sub-optimal representation of a given function as
a sum of decaying exponentials (i.e., a representation that contains an excessive
number of terms for a desired approximation error ǫ); the reduction algorithm may
then be used to compute another exponential representation, but with a smaller
number of terms. The reduction algorithm requires O

(
M2N

)
operations, and is

therefore essentially linear in the number of sub-optimal exponentials. Moreover,
in contrast to Algorithm 1, the reduction algorithm reliably yields (near) optimal
representations with approximation error ǫ as small as 10−14, and has high efficiency
even when f (r) decays slowly or has 1/r-type singularities.

2.2. Integration and interpolation on the sphere. Let us briefly recall some
results from [4] on quadratures for efficient integration and interpolation on the
sphere with nodes invariant under the icosahedral group.

6

7

where Rj , j = 1, . . . , J denote the positions of the nuclei. Here the radial compo-

nent f
(j)
n (r) satisfies

(3.3) f (j)n (r) =
∑

k

a
(j)
k,n exp

(
−α(j)

k,nr
)
,

andKc
n ≡ K

(Nc,Lc)
n denotes the interpolating function on the sphere associated with

Nc spherical quadrature nodes ωc
n ≡ ω

Nc
n and interpolation order Lc (see Section 2.2

for details). For simplicity we assume that the number of quadrature nodes, Nc,
does not depend on the singularity location Rj (in the examples in Section 5, Nc =
12). In contrast to representations based on Slater-type orbitals or Gaussian-type

orbitals, the number and the values of (complex-valued) exponents a
(j)
k,n in the radial

representation (3.3) are not fixed in advance. Indeed, as described in Section 4,
the exponents (and the coefficients) are determined dynamically throughout the
course of the computation to achieve a desired level of accuracy while using a near
optimally small number of terms. We also note that the J nuclei-centered terms
that comprise the cusp part fc (r) may overlap with one another (and, in fact, do
overlap in the examples in Section 5).

Similarly, we represent the smooth part fs (r) in the form

(3.4) fs (r) =

Ns∑

n=1

Ks
n

(
r

‖r‖

)∑

k

ak,n exp (−αk,n ‖r‖) ,

where Ks
n ≡ K

(Ns,Ls)
n denotes the interpolating function on the sphere associated

with Ns spherical quadrature nodes ω
s
n ≡ ω

Ns
n and interpolation order Ls. The

8

In an analogous way, the smooth part fs (r) can also be expressed in terms of
spherical harmonics,

(3.6) fs (r) =

Ls∑

l=0

l∑

m=−l

Y m
l (ω)

∑

k

ak,lm exp (−αk,lm ‖r‖) .

The representations (3.2) and (3.4) based on spherical interpolating functions are
convenient for algorithms such as multiplication (see Sections 4.1 and 4.2), while
the forms (3.5) and (3.6) are convenient for applying convolution operators (see
Section 4.3).

3.2. Converting between interpolating and spherical representations. We
make use of two basic forms for representing fc (r) and fs (r) and now show how to
convert between these two representations. It suffices to consider

(3.7) f (r) =

L∑

l=0

l∑

m=−l

Y m
l (ω) flm (r) , flm (r) =

∑

k

ak,lm exp (−αk,lmr) ,

and

(3.8) f (r) =

N∑

n=1

K(N,L)
n (ω) fn (r) , fn (r) =

∑

k

ak,n exp (−αk,nr) .

We make use of the fact that the interpolating function K
(N,L)
n (ω) can be written

in the form

(3.9) K(N,L)
n (ω) = wN

n

L∑

l=0

l∑

m=−l

Y m,∗
l

(
ω

N
n

)
Y m
l (ω) ,

where ω
N
n and wN

n denote the nth node and weight associated with the N -point
quadrature rule (see Section 2.2).

In order to convert from (3.7) to (3.8), we have

flm (r) =

∫

S2

(
N∑

n=1

K(N,L)
n (ω) fn (r)

)
Y m,∗
l (ω) dΩ

=

N∑

n=1

(∫

S2

K(N,L)
n (ω)Y m,∗

l (ω) dΩ

)
fn (r)

=
N∑

n=1

wN
n Y

m,∗
l

(
ω

N
n

)
fn (r) ,

where the last equality uses formula (3.9). Thus, to convert from a spherical har-
monic representation to an interpolating representation, it suffices to use Algo-
rithm 1 and the above formula for evaluating flm (r).

Similarly, to convert from (3.8) to (3.7), we use

fn (r) = f
(
rωN

n

)
=

L∑

l=0

l∑

m=−l

Y m
l

(
ω

N
n

)
flm (r) .

Hence, it suffices to use Algorithm 1 and the above formula for evaluating fn (r).

10

4.1. Multiplication of representations. Let us consider two functions f (r) =
fc (r) + fs (r) and g (r) = gc (r) + gs (r) in the form (3.1) in Section 3.1. We present
an algorithm to construct the same type of representation for the product,

f (r) g (r) = hc (r) + hs (r) +O (ǫ) ,

where ǫ is the desired approximation error.
The basic idea behind the algorithm is that, in a neighborhood of the singularity

at Rj , the product f (r) g (r) has the form

f (rω + Rj) g (rω + Rj) =

Lc∑

l=0

rl
l∑

m=−l

q
(j)
lm (r) Ylm (ω) + rLc+1hLc

(rω) ,

where q
(j)
lm (r) is a polynomial and hLc

(rω) is continuous. Therefore, the difference

f (rω + Rj) g (g(g(

11

Here we can choose the cutoff R to be small, e.g. R = mink 6=

12

−6 −4 −2 0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
f(r)g(r), r=(0,0,z)

−6 −4 −2 0 2 4 6
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0
f(r)g(r)−h1 (r)−h2 (r), r=(0,0,z)

(a) (b)

Figure 4.1. The product f (r) g (r) (a), where f (r) = g

13

The advantage of maintaining this intermediate form is twofold. First, by incor-
porating the 1/r-type singularities explicitly in the representation of gc (r), g1.66.293(o)-5.r

14

where

gj (rωc
n + Rj) =

1

r

∑

k

a
(j)
k,n exp

(
−α(j)

k,nr
)

+
∑

n

b
(j)
k,n exp

(
−β(j)k,nr

)
.

Then extending gj (r) by interpolation,

gj (rω + Rj) =

Nc∑

n=1

Kc
n (ω)

(
∑

k

a
(j)
k,n exp

(
−α(j)

k,nr
)

+
∑

n

b
(j)
k,n exp

(
−β(j)k,nr

))
,

we arrive at the representation (4.6). The computation of the smooth part gs (r)
proceeds in the same way as the computation of the smooth part of hs (r) of the
multiplicand f (r) g (r) in Section 4.1.

4.3. Convolution with the bound-state Helmholtz and Poisson kernels.

We first discuss how to evaluate the convolution operator,

(4.8)
(
−∆ + µ2

)−1
f (r) =

1

4π

∫

R3

e−µ‖r−y‖

‖r− y‖ f (y) dy,

to obtain the representation in the form described in Section 3.1. We assume that
f (r) is already given in this form and, for now, µ > 0. As is typical in pseudo-
spectral methods, it is more efficient to apply this operator in the Fourier domain—
in this case, the space of spherical harmonics. Thus, we first convert f (r) from an
interpolating representation to a spherical harmonic representation, as described in
Section 3.2.

By linearity and translation invariance of
(
−∆ + µ2

)−1
, it also suffices to con-

sider f (r) in the form f (r) = f0 (r) Y m
l (ω) . Now, by expanding the kernel in

(4.8) via spherical harmonics, it can be shown that
(
−∆ + µ2

)−1
(f0 (r) Y m

l (ω)) = Y m
l (ω)Fl (r) ,

where Fl (r) is given by

(4.9) Fl (r) =
2µ

π

(
kl (rµ)

∫ r

0

il (ρµ) f0 (ρ) ρ2dρ+ il (rµ)

∫ ∞

r

kl (ρµ) f0 (ρ) ρ2dρ

)
,

and il (z) and kl (z) are defined in terms of the modified Bessel functions

il (z) =

√
π

2z
Il+1/2 (z) , kl (z) =

√
π

2z
Kl+1/2 (z) .

Thus, computing a representation of
(
−∆ + µ2

)−1
f (r) simply involves using Al-

gorithm 1 to construct an exponential representation of Fl (r). We also note that
when f (r) is of the intermediate form (4.6), the only difference is that we also have
integrals of the form

Fl (r) =
2µ

π

(
kl (rµ)

∫ r

0

il (ρµ) f0 (ρ) ρdρ+ il (rµ)

∫ ∞

r

kl (ρµ) f0 (ρ) ρdρ

)
,

for which we also need to construct exponential representations.
Recall that Algorithm 1 requires sampling Fl (ρ) on an equispaced grid rn =

Rn/ (2N),

15

The integral between rn and rn+1 can be accurately evaluated using a small number
of quadrature points since il (µρ) does not oscillate for µ > 0 (e.g., we use 5 quad-
rature nodes in our examples in Section 5). Once the samples I1 (rn) are computed,
samples of the first integral in (4.9) may be readily obtained. We note that the
values of il (µρ) at the quadrature points may be computed using an interpolation
table constructed off-line. Also, by assumption the function f0 (ρ) is represented
with a near optimally small number of exponents, and is thus also inexpensive to
sample. The second integral defining Fl (r) may be efficiently sampled in a similar
manner.

Computing a representation of ∆−1f (i.e., in the case µ = 0) proceeds in a
similar manner. In particular, we have

∆−1 (Y m
l (ω) f0 (r)) = Y m

l (ω)Fl (r) ,

where

(4.10) Fl (r) = − 1

2l+ 1

(
r−l−1

∫ r

0

f0 (r) ρ2+ldρ+ rl
∫ ∞

r

f0 (r) ρ−l+1dρ

)
.

One technical difference is that Fl (r) decays like Alr
−l−1, where Al depends on

the exponents and coefficients of f0 (r); thus, for small l, the direct application of
Algorithm 1 would require a prohibitively large number of samples for a representa-
tion on the entire half line r ≥ 0. However, in the quantum chemistry applications
considered here, we only need to represent products of the form g

(
∆−1f

)
, where

the function g (r) (and, thus, the overall product) decays exponentially fast. There-
fore, it suffices to construct an exponential approximation to Fl (r) only within the
numerical support of g (r), which is the approach taken in the examples in Section 5.

Remark 4.1. We can alternatively use the methods in [8] and [20] to construct an
efficient exponential representation of Fl (r) on the entire half line r ≥ 0. In fact, the
slowly decaying asymptotic part Alr

−l−1 can be represented with a small number of
decaying exponentials via the discretization of an appropriate quadrature formula
[8]. Once this exponential representation for Alr

−l−1 is available, an exponential
representation for the rapidly decaying function Fl (r)−Alr

−l−1 can be constructed
using Algorithm 1.

5. Example of solving Hartree-Fock equations for diatomic

molecules

We now use the representations and algorithms in Sections 3.1 and 4 to solve
the Hartree-Fock equations for several diatomic molecules.

Example 1. As our first example of using the representations and algorithms
discussed above, we solve the Hartree-Fock equation,

(5.1)

(
−1

2
∆ + V − 4π∆−1

(
|φ|2

))
φ = Eφ,

with the potential

V (r) =
Z1

‖r−R1‖
+

Z2

‖r−R2‖
.

As in [19, 31, 32], our basic approach involves recasting (5.1) as an integral equation
which we solve via iteration. However, in contrast to [19, 31, 32], we represent φ (r)
as described in Section 3.1 and apply algorithms described in Section 4. Since the

16

spatial orbital φ (r) has cusp-like singularities at the nuclei r = R1 and r = R2,
the Hartree-Fock equation provides a useful accuracy test for our approach.

17

Example 2. For our second example, we consider the Hartree-Fock equation for
Lithium Hydride, LiH. We have

(5.2) Fφj (r) = Ejφj (r) , j = 1, 2,

where F = − 1
2∆ + V + 2J −K,

Jφj = φj

(
−4π∆−1

(
|φ1|2 + |φ2|2

))
,

Kφj = φ1
(
−4π∆−1 (φ∗1φj)

)
+ φ2

(
−4π∆−1 (φ∗2φj)

)
,

and

V (r) =
Z1

‖r−R1‖
+

Z2

‖r−R2‖
.

18

−8 −6 −4 −2 0 2 4 6 8
−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3
ψ(r), r=(x,0,0)

(a)

