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We introduce new families of Gaussian-type quadratures for weighted integrals
of exponential functions and consider their applications to integration and interpo-
lation of bandlimited functions.

We use a generalization of a representation theorem due to Carathéodory to derive
these quadratures. For each positive measure, the quadratures are parameterized by
eigenvalues of the Toeplitz matrix constructed from the trigonometric moments of
the measure. For a given accuracy
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the form

ck =
M∑
j=1

ρjeiπθj k, (1.1)

for k = 1,2, . . . ,N and M ≤ N , where −1 < θj ≤ 1 and ρj > 0. Carathéodory
representation (1.1) has been the foundation for a number of algorithms for spectral
estimation; in particular, [20] is known in electrical engineering literature as the Pisarenko
method. In this paper we develop a fast algorithm for finding M , the phasesT015



334 BEYLKIN AND MONZÓN

As a method for constructing generalized Gaussian quadratures, our results are limited to
integrals (with a fairly arbitrary measure) involving exponentials. Our algorithm involves
finding eigenvalues and eigenvectors of a Toeplitz matrix constructed from trigonometric
moments of the measure and then computing the roots on the unit circle for appropriate
eigenpolynomials. In particular, each eigenpolynomial with distinct roots gives rise to an
identity which, for small eigenvalues, provides us with a Gaussian-type quadrature and also
with a representation of positive definite Hermitian Toeplitz matrices. In these identities the
size of the eigenvalue determines the accuracy of the quadrature formula.

It turns out that in the case of the weight leading to PSWF, the nodes of the corresponding
Gaussian quadratures are zeros (appropriately scaled to the interval [−1,1]) of discrete
PSWF corresponding to small eigenvalues.



GAUSSIAN QUADRATURES FOR EXPONENTIALS 335

The paper is organized as follows. We present a brief description of the Pisarenko
method to obtain the classical Carathéodory representation and we derive the estimate
(1.2) in Section 2. In Section 3 we discuss generalized Gaussian quadratures for weighted
integrals and prove some of their properties for weights supported inside [−1/2,1/2].
In Section 4 we introduce new families of Gaussian-type quadratures. We develop a fast
algorithm in Section 5 to compute the nodes and weights of these quadratures. We solve
the approximation problem (1.3)–(1.5) in Section 6 and use it in the next two sections
to obtain quadratures and interpolating bases for bandlimited functions. We also discuss
various examples to illustrate these results. Finally, conclusions are presented in Section 9.

2. CARATHÉODORY REPRESENTATION

Carathéodory representation solves the trigonometric moments problem and can be
stated as follows (see [8, Chap. 4]).

THEOREM 2.1. Given N complex numbers c = (c1, c2, . . . , cN ), not all zero, there
exist unique M ≤ N , positive numbers ρ = (ρ1, ρ2, . . . , ρM), and distinct real numbers
θ1, θ2, . . . , θM1 T6J
-84 Tm2540
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2.1. Algorithm I: Method to Obtain M , θ , and ρ

(1) Given c = (c1, c2, . . . , cN), we extend the definition of ck to negative k as
c−k = ck and we define c0 so that the (N + 1)× (N + 1) Toeplitz matrix T N of elements
(T N)kj = cj−k , has nonnegative eigenvalues and at least one eigenvalue is equal to zero.

(2) Define M as the rank of T N . By construction, we have M ≤N . We also say that
M is the rank of the representation (2.1).

(3) Let T M be the top left principal submatrix of order M + 1 of T N . That is, the
matrix T M has elements (cj−k)0≤k,j≤M . Find the eigenvector q corresponding to the zero
eigenvalue of T M .

(4) Construct the polynomial (eigenpolynomial) whose coefficients are the entries of
the eigenvector q . As shown in [8, p. 58], the M roots of this eigenpolynomial are distinct
and have absolute value 1. The phases of these roots are the numbers θj .

(5) Find the weights ρ by solving the Vandermonde system (2.1) for k = 1, . . . ,M .
They will, in addition, satisfy

∑
k ρk = c0.

Remark 2.1. With the extension of the sequence ck , (2.1) is valid for |k| ≤ N . If
q = (q0, . . . , qM) is the eigenvector obtained in part (3) of Algorithm 2.1, then

M∑
k=0

ck+sqk = 0, (2.2)

for all s,−N ≤ s ≤ 0. In other words, we have found an order-M recurrence relation for
the original sequence {ck}Nk=1.

Remark 2.2. In practice, we are interested in using Carathéodory representation if M is
small compared with N , or more generally, if most weights are smaller than the accuracy
sought. However, in such cases, T N has a large (numerical) null subspace that causes
severe numerical problems in determining c0, the rank M , and the eigenvector q .

Nevertheless, if the sequence c is the trigonometric moments of an appropriate weight,
we will be able to modify the previous method in order to obtain the phases θj in an
efficient manner. In this setting, the phases and weights in Carathéodory representation
can be thought of as the nodes and weights of a Gaussian-type quadrature for weighted
integrals. Once the phases are obtained, Theorem 2.2 assures that the computation of the
weights is a well-posed problem. In Section 5.2 we present a fast algorithm to obtain the
weights by evaluating certain polynomials at the nodes eiπθj .

Remark 2.3. Given any Hermitian Toeplitz matrix T , let us consider its smallest
eigenvalue λ(N)
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3. GENERALIZED GAUSSIAN QUADRATURES FOR EXPONENTIALS

3.1. Preliminaries: Chebyshev Systems

In this section we collect some definitions and results related to Chebyshev systems. We
follow mostly Karlin and Studden [12] (see also [13]). Readers familiar with this topic may
skip this section.

A family of n+ 1 real-valued functions u0, . . . , un defined on an interval I = [a, b] is a
Chebyshev system (T-system) if any nontrivial linear combination

u(t)=
n∑

j=0

αjuj (t) (3.1)

has at most n zeros on the interval I . This property of a T-system can be viewed as a
generalization of the same property for polynomials. Indeed, the family {1, t, t2, . . . , tn}
provides the simplest example of a Chebyshev system.

Alternatively, a T-system over [a, b]may be defined by the condition that the n+1 order
determinant is nonvanishing,

det



u0(t0) u0(t1) · · · u0(tn)

u1(t0) u1(t1) · · · u1(tn)

· · · · · · · · · · · ·
un(t0) un(t1) · · · un(tn)


 �= 0, (3.2)

whenever a ≤ t0 < t1 < · · · < tn ≤ b. Without loss of generality, the determinant can be
assumed positive.

Let u0, . . . , un be a T-system on the interval I . The moment space Mn+1 with respect
to u0, . . . , un is defined as the set

Mn+1 =
{

72 Tmλ(x)Tjλ)F5 1 Tfλ1(37 0(1 ]TJλ)F11 λF6 1θ
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THEOREM 3.5 [12, VI, Sec. 4]. For the periodic T-system (3.5), a point
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In this section we start by using Carathéodory representation and Theorem 3.7 from
the previous section, to construct two different Gaussian quadratures for integrals with
weight w. These quadratures are exact for trigonometric polynomials of appropriate
degree.

We then generalize these types of quadratures further and develop a new family of
Gaussian-type quadratures. This family of quadrature formulas is parameterized by the
eigenvalues of the Toeplitz matrix

T = {tl−k}0≤k, l≤N. (4.2)

Among these new quadrature formulas, only those corresponding to eigenvalues of small
size are of practical interest. In fact, the size of the eigenvalue determines the error of the
quadrature formula. To compute the weights and nodes of these quadratures, we develop
a new algorithm which may be viewed as a (major) modification of Algorithm 2.1. The
new algorithm is described in Section 5. The main results of this section are gathered in
Theorem 4.1.

We start by using Theorem 3.7 to write

tk =
N∑
j=1

ωj eiπφj k +ω0(−1)k, for |k| ≤N, (4.3)

for unique positive weights ωj and phases φj in (−1,1). Then, for any A(z) =∑
|k|≤N akz

k in ,N , the space of Laurent polynomials of degree at most N , we have

∫ 1

−1
A(eiπτ )w(τ) dτ =

∑
|k|≤N

aktk =
N∑
j=1

ωjA(e
iπφj )+ω0A(−1), (4.4)

for unique positive weights ωj and nodes eiπφj .
Alternatively, using Carathéodory representation (2.1) applied to the sequence ck = tk ,

1≤ k ≤N ,

∫ 1

−1
A(eiπτ )w(τ) dτ =

M∑
j=1

ρjA(eiπθj )+ (t0 − c0)
1

2

∫ 1

−1
A(eiπτ ) dτ

=
M∑
j=1

ρjA(eiπθj )+ λ(N) 1

2

∫ 1

−1
A(eiπτ ) dτ , (4.5)

where c0 =∑M
j=1 ρj and {eiπθj } are the roots of the eigenpolynomial corresponding to the

smallest eigenvalue λ(N) of T .
Note that (4.5) is again valid for all A(z) in ,N and that the positive weights ρj and

phases θj in (−1,1] are unique.
Thus, we have two different quadratures that may not coincide. However, by considering

w(τ) supported inside (−1/2,1/2), (3.12) implies that w0 in (4.4) decreases exponentially
fast with N and, since minw(τ)= 0 for |τ | ≤ 1, we have

lim
N→∞λ(N) = 0, (4.6)
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4.2. Gaussian-Type Quadratures on the Unit Circle

In this section we present the main results of the paper. We derive new Gaussian-
type quadratures valid for any eigenvalue of the matrix T rather than just the smallest
eigenvalue λN . These quadratures allow us to select the desired accuracy and thus, to
construct accuracy-dependent families of quadratures.

The nodes of the quadrature in (4.5) are the roots of the eigenpolynomial corresponding
to the least eigenvalue of T and, because of Carathéodory representation, we know that
these roots are on the unit circle and that the weights are positive numbers. In our
generalization, this standard property for the nodes and weights is no longer enforced.
However, we will show that for nodes on the unit circle, the corresponding weights are
real. Moreover, in all examples we have examined, for all small eigenvalues λ of T , their
negative weights are associated with the nodes outside the support of the weight and are
comparable in size with λ. We believe this property to hold for a wide variety of weights.

We prove the following

THEOREM 4.1. Assume that the eigenpolynomial V (s)(z) corresponding to the
eigenvalue λ(s) of T has distinct, nonzero roots {γj }Nj=1. Then there exist numbers {wj }Nj=1
such that

(i) For all Laurent polynomials P(z) of degree at most N ,

∫ 1

−1
P(eiπt )w(t) dt =

N∑
j=1

wjP(γj )+ λ(s)
1

2

∫ 1

−1
P(eiπt ) dt. (4.12)

(ii) For each root γk with |γk| = 1, the corresponding weight wk is a real number and

wk =
∫ 1

−1
|Ls

k(e
iπt )|2w(t) dt − λ(s)

1

2

∫ 1

−1
|Ls

k(e
iπt )|2 dt, (4.13)

where

Ls
k(z)=

V (s)(z)

(V (s))′(γk) (z− γk)
(4.14)

is the Lagrange polynomial associated with the root γk .
(iii) If λ(s) is a simple eigenvalue, then for k = 1, . . . ,N , the weight wk is nonzero

and

1

wk

=
∑

0≤l≤N
l �=s

V (l)(γk)V
(l)∗ (γk)

λ(l) − λ(s)
, (4.15)

where V
(l)∗ (z)= V (l)(z−1) is the reciprocal polynomial of V (l)(z).

In particular, for each γk with |γk| = 1,

1

wk

=
∑

0≤l≤N
l �=s

|V (l)(γk)|2
λ(l) − λ(s)

. (4.16)

(iv) If λ(s) is a simple eigenvalue and all roots γk are on the unit circle, then the set
{wk}Nk=1 contains exactly s positive numbers and N − s negative numbers.
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In particular, if s = 0 or s =N , then all wk are negative or positive, respectively.

Remark 4.1. Our approach to obtain Gaussian quadratures does not use Szegő
polynomials and is therefore substantially different than the one in [11]. We briefly explain
the approach in [11]. Note that (4.9) and (4.10) show that the polynomials {V (k)(z)} are
orthogonal with respect to both the usual inner product for trigonometric polynomials and
the weighted inner product with weight w(t). We can also construct Szegő polynomials
{pk(z)} orthogonal with respect to w(t) and such that each pk(z) has precise degree k [26].
For any k, the roots of pk(z) are all in |z|< 1 [8].

Szegő polynomials and their reciprocals induce para-orthogonal polynomials [11],

BnB
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For γk outside the support of the measure, we have observed (Figs. 2, 3, and 5–8) that

∑
l: λ(s)>λ(l)

|V (l)(γk)|2

is a constant of moderate size.
Thus, the second term in (4.17) is O(1/λ(s)) and the weight is indeed negative and

roughly of the size of the eigenvalue.

Remark 4.5. For the weight with value 1 in (−1/2,1/2) and 0 otherwise, the
eigenpolynomials are the discrete PSWF. For these functions, we know that all eigenvalues
are simple and that all eigenpolynomial roots are on the unit circle [23].

COROLLARY 4.1. Under the assumptions of Theorem 4.1, it follows that the Toeplitz
matrix T in (4.2) has the following representation as a sum of rank-1 Toeplitz matrices,

(T − λ(s)I )kl =
N∑
j=1

wjγ
l−k
j ,

where λ(s), wj , and γj are as in (4.12).

This corollary should be compared with Remark 2.3 noting that, in the corollary, λ(s) is
not necessarily the least eigenvalue of T . For an alternative derivation see [4].

Proof of Theorem 4.1. (1) For x = (x0, . . . , xN) ∈CN+1, let us define

Ax(z)=




L∑
l=−L

xl+Lzl, if N = 2
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(3) Let P ∈,N ; then zNP(z) is a polynomial of at most degree 2N , and since zLV (s)(z)

is a polynomial of degree N , by Euclidean division, there exist polynomials q(z) and r(z)

of degrees at most N and N − 1 such that

zNP(z)= zLV (s)(z)q(z)+ r(z).

Thus,

P(z)= V (s)(z)Q(z)+R(z), (4.19)

where Q(z) ∈,L and R(z) has the form R(z)=∑N
k=1 rkz

−k and hence

∫ 1

−1
R(eiπt ) dt = 0.

Using the fact that {V (l)}Nl=0 is a basis of ,L, we write

Q(eiπt )=
N∑
l=0

dl V
(l)(eiπt ),

where dl are some complex coefficients.
Using (4.10) and (4.18), we multiply both sides of (4.19) by w(t) and integrate to obtain

∫ 1

−1
P(eiπt )w(t) dt =

N
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and thus, considering k = j , (4.15) follows. Note that we need λ(s) to be simple to
guarantee λ(l) − λ(s) �= 0, l �= s in (4.20).

If we view the left hand side of (4.20) as the entries Akj of a matrix A and let B be the
matrix of entries

Blk = V (l)(γk), where 0≤ l ≤N, l �= s, and 1≤ k ≤N, (4.21)

we can prove (4.20) by showing that BA= B and that B is nonsingular.
For the latter claim, we simply check that the columns of B are linearly independent.

Indeed, let al, l �= s, be constants such that

∑
l �=s

alV
(l)(γk)= 0, for k = 1, . . . ,N.

It follows that the polynomial P(z) = ∑
l �=s alV (l)(z) ∈ ,L has the N = 2L distinct

roots γk . Since P and V (s) have the same degree and the same N distinct roots,
P(z) = cV (s)(z), for some constant c. By (4.9), V (s)(z) is orthogonal to all the other
eigenpolynomials and so al = 0.

To show that BA= B , we first substitute P(z)= V (l)(z)V
(m)∗ (z) in (4.12) to obtain∫ 1

−1
V (l)(eiπt )

(

i
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FIG. 2. Modified eigenpolynomial e−iπt(N/2)V (30)(eiπt ) on the interval [−1,1], where N = 97 and
V (30)(eiπt ) is the eigenpolynomial corresponding to the eigenvalue λ(30) in Example 1. The phase factor
e−iπtN/2 is introduced to make this function real.

EXAMPLE 1. First we consider the weight

w(t)=
{

1, t ∈ [−a, a], a ≤ 1/2,
0, elsewhere.

(4.24)

For this weight, the eigenpolynomials V (l)(eiπt ) of the N + 1×N + 1 Toeplitz matrix T

are the discrete PSWF [23]. Thus the eigenpolynomial V (l)(eiπt ) has all of its zeros on the
unit circle. Moreover, it has exactly l zeros for t in the interval (−a, a) and N zeros for t
in [−1,1]. In this example we have selected N = 97, a = 1/6, c= 15π . We then construct
the matrix T and compute the eigenpolynomial corresponding to the eigenvalue

λ(30) = 9.77306136381891632828 · 10−16. (4.25)

The eigenpolynomial V (30)(eiπt ) is shown in Figs. 2 and 3. Locations of the zeros on the
unit circle are displayed in Fig. 4. We then use the quadrature formula corresponding to
this eigenvalue and tabulate the weights in Table I. Note that the weights for nodes inside
the interval [−1/6,1/6]
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FIG. 5. Modified eigenpolynomial (see Fig. 2) on the interval [−1,1] corresponding to the eigenvalue λ(28)

in Example 2.

EXAMPLE 2. We consider the weight

w(t)=
{ |t|/a, t ∈ [−a, a], a ≤ 1/2,

0, elsewhere.
(4.26)

In this example we have selected N = 61, a = 1/4, c = 15π . We then construct the
matrix T and compute the eigenpolynomial corresponding to the eigenvalue

λ(28) = 1.11598931688523706280 · 10−14. (4.27)

The eigenpolynomial V (28)(eiπt ) is shown in Figs. 5 and 6.

EXAMPLE 3. We consider a nonsymmetric weight

w(t)=
{

1+ t/a, t ∈ [−a, a], a ≤ 1/2,
0, elsewhere.

(4.28)

FIG. 6. The same function of Fig. 5 on the interval [−1/4,1/4].
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FIG. 7. Modified eigenpolynomial (see Fig. 2) on the interval [−1,1] corresponding to the eigenvalue λ(28)

in Example 3.

In this example we have selected N = 61, a = 1/4, c = 15π . We then construct the
matrix T and compute the eigenpolynomial corresponding to the eigenvalue

λ(28) = 4.68165338379692121389 · 10−15. (4.29)

The eigenpolynomial V (28)(eiπt ) is shown in Figs. 7 and 8. Although we do not have a
proof at the moment, it appears that there is a class of weights for which eigenpolynomials
corresponding to small eigenvalues mimic the behavior of the discrete PSWF with respect
to locations of zeros. In Example 3 we know that all zeros are on the unit circle due to
Theorems 4.2 and 4.3.

In Table II we illustrate the performance of quadratures for different bandlimits c. This
table should be compared with [29, Table 1]. The performance of both sets of quadratures is
very similar. Yet these quadratures are quite different as can be seen by comparing Table III
with [29, Table 5]. Although the accuracy is almost identical, approximately 10
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TABLE II
Quadrature Performance for Varying Bandlimits

c # of nodes Maximum errors

20 13 1.2 · 10−7

50 24 1.1 · 10−7

100 41 1.6 · 10−7

200 74 1.8 · 10−7

500 171 1.4 · 10−7

1000 331 2.4 · 10−7

2000 651 1.2 · 10−7

4000 1288 3.7 · 10−7

5. A NEW ALGORITHM FOR CARATHÉODORY REPRESENTATION

5.1. Algorithm 2

We now describe an algorithm for computing quadratures via a Carathéodory-type
approach based on Theorem 4.1. It is easy to see that, although there are similarities with

TABLE III
Quadrature Nodes for Exponentials with Maximum Bandlimit c = 50

Node Weight

−0.99041609489889 2.42209284787E-02
−0.95238829377394 5.04152570050E-02
−0.89243677566550 6.82109308489E-02
−0.81807124037876 7.96841731718E-02
−0.73438712699465 8.71710040243E-02
−0.64454148960251 9.22000859355E-02
−0.55050369342444 9.56668891250E-02
−0.45355265507507 9.80920675810E-02
−0.35456254990620 9.97843340729E-02
−0.25416536256280 1.00930070892E-01
−0.15284664158549 1.01641529848E-01
−0.05100535080412 1.01982696564E-01

0.05100535080412 1.01982696564E-01
0.15284664158549 1.01641529848E-01
0.25416536256280 1.00930070892E-01
0.35456254990620 9.97843340729E-02
0.45355265507507 9.80920675810E-02
0.55050369342444 9.56668891250E-02
0.64454148960251 9.22000859355E-02
0.73438712699465 8.71710040243E-02
0.81807124037876 7.96841731718E-02
0.89243677566550 6.82109308489E-02
0.95238829377394 5.04152570050E-02
0.99041609489889 2.42209284787E-02
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Pisarenko’s method, the corresponding algorithms are substantially different. We plan to
address implications for signal processing in a separate paper.

(1) Given tk , the trigonometric moments of a measure, we construct the (N + 1)× (N +
1) Toeplitz matrix T N with elements (T N)kj = tj−k . This matrix is positive definite and
has a large number of small eigenvalues.

(2) For a given accuracy ε, we compute the inverse of the Toeplitz matrix T N − εI .
For a self-adjoint Toeplitz matrix, it is sufficient to solve (T N − εI
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If we define

Q(z)=
M∏
k=1

(z− γk)=
M∑
k=0

qkz
k, (5.2)

then, for any polynomial P of degree at most M − 1,

P(z)

Q(z)
=

M∑
r=1

P(γr)

Q′(γr )(z− γr)
.

Thus, for |z|< min |γr |−1,

zM−1

zM

P(z−1)

Q(z−1)
=

M∑
r=1

P(γr)

Q′(γr)

+∞∑
k=0

γ k
r z

k =
+∞∑
k=0

(
M∑
r=1

P(γr)

Q′(γr )
γ k
r

)
zk. (5.3)

Now choose P to be the unique polynomial with P(γr) = ρr Q
′

M,M√P
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This algorithm is equivalent to the following factorization of the inverse of the
Vandermonde matrix in terms of a diagonal matrix, its transpose V t , and a triangular
Hankel matrix,

V −1 =




1

Q′(γ1)
. . . 0

. . .

0 . . .
1

Q′(γM)


V t




q1 q2 . . . qM

q2 . . . qM 0
...

...

. . . 0
qM . . . 0 0


 . (5.5)

This description is a particular case of the inversion formulae for Löwner–Vander-
monde [21] or close to Vandermonde matrices [9, Corollary 2.1, p. 157]. We can state
those results as (see [21, p. 548])

V −1 =


x1 . . . 0

. . .

0 . . . xM


V t




−y2 −y3 . . . 1
−y3 . . . 1 0
...

...

. . . 0
1 . . . 0 0


 ,

where the vectors x = (x1, . . . , xM)t and y = (y1, . . . , yM)t are solutions of

V x = (0, . . . ,1)t and V ty = [γM
r ]Mr=1.

Since γr are the roots of Q(z), we can take y = −(q0, . . . , qM−1)
t , and if B(z) = zM

in (5.4), then P(z)= 1 and x = (1/Q′(γ1), . . . ,1/Q′(γM))t .

Remark 5.1. For Algorithm 5.1, we first obtained the eigenvector q corresponding to an
eigenvalue close to ε. Thus, step (1) of the Vandermonde algorithm is already accomplished
and step (2) can be performed using the FFT. Furthermore, the nodes γk belong to the unit
circle and, via the unequally spaced fast Fourier transform, we have a fast algorithm to
obtain the weights.

Remark 5.2. As an example, we use this approach to derive the solution of the
Vandermonde system with nodes at γr = ei2π(r−1)/M , 1 ≤ r ≤M . In this case, Q(z) =
1− =−p
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Proof of Theorem 6.1. Let

u(y)=
∫ 1

−1
σ(t)eiπty dt,

and, for each m, define the spline of order 2m− 1 interpolating u(y) at the integers,

a(y)=
∑
k

u(k)L2m−1(y − k)=
∫ 1

−1
σ(t)S2m−1(y, eiπt) dt.

By (6.7),

|u(y)− a(y)| ≤ 3
∫ ν

−ν
σ (t)|t|2m dt ≤ 3ν2m‖σ‖1,

where ‖σ‖1 =
∫ 1
−1 σ(t) dt . We choose m such that 3ν2m‖σ‖1 < ε/4.

On the other hand, for each N , Theorem 3.7 allows us to represent the moments u(k),
|k| ≤N ,

u(k)=
∫ 1

−1
σ(t)eiπkt dt =

N∑
j=1

wjeiπθj k +w0(−1)k, (6.9)

where

w0 ≤ 4‖σ‖1

2+ (2+√3)N + (2−√3)N
. (6.10)

Let

ũ(y)=
N∑
j=1

wjeiπθj y;

then u(k)= ũ(k)+w0(−1)k for |k| ≤N , and defining

ã(y)=
∑
k

ũ(k)L2m−1(y − k)=
N∑
j=1

wjS2m−1(y, eiπθj ),

(6.7) gives the estimate

|ũ(y)− ã(y)| ≤ 3
N∑
j=1

wj |θj |2m ≤ 3ν2m(u(0)−w0)≤ 3ν2m‖σ‖1 <
ε

4
.

We have shown that u(y) is close to a(y) and ũ(y) is close to ã(y). To finish the proof, we
need to show that |a(y)− ã(y)|< ε/2, for |y| ≤ dN + 1. Now,

a(y)− ã(y)=
∑
|k|≤N

w0(−1)kL2m−1(y − k)+
∑
|k|>N

(u(k)− ũ(k))L2m−1(y − k)

=w0S2m−1(y, eiπ)+
∑
|k|>N

(u(k)− ũ(k)−w0(−1)k)L2m−1(y − k)

and

|u(k)− ũ(k)−w0(−1)k| ≤ |u(k)| + |ũ(k)| +w0 ≤
N∑
j=0

wj +
N∑
j=1

wj +w0

≤ 2u(0)= 2‖σ‖1,

where we used (6.9).
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Since J2n is an even function, we have

v(x)=
∫ 1

−1
w̃(τ )J2n(cxτ) dτ. (7.4)

Using

J2n(ξ)= (−1)n

π
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where

ṽj =
M∑
k=1

wkψj (θk), (7.13)

and the nodes θk and the weights wk are the same as in (1.4).

For large c, the spectrum of Fc can be divided into three groups. The first group contains
approximately 2c/π eigenvalues with absolute value very close to 1. They are followed by
order log c eigenvalues whose absolute values make an exponentially fast transition from 1
to 0. The third group consists of exponentially decaying eigenvalues that are very close to
zero. For precise statements see [14, 24, 25, 29].

Therefore, it follows from (7.12) that, for the first ≈2c/π eigenfunctions, the integrals
in (7.11) are well approximated by the quadratures in (7.13). To prove (7.12), use (7.10),
to write

vj − ṽj = 1

λj

∫ 1

−1

(∫ 1

−1
w(τ)eicτ t dτ −

M∑
k=1

wkeicθkt

)
ψj(t) dt. (7.14)

Since |t| ≤ 1, we have ∣∣∣∣∣
∫ 1

−1
w(τ)eicτ t dτ −

M∑
k=1

wkeicθkt

∣∣∣∣∣≤ ε, (7.15)

and ‖ψj‖2 = 1 impliesTD
0.0052 Tc
(�.14 41e012)Tj
67ss8Tj
/(i)0.9(m Tm
(�)
8.6483 0 TD-94h5)T1 Tf
65D
-0.0001 Tc
[(1)-258.9s5.3614239 1���� and



3 6 2BEYLKIN AND MONZÓN

I n c o n s i d e r i n g b a n d l i m i t e d f u n c t i o n s w e w i l l u s e t h e P S W F ( s e e [ 1 5 , 2 4 ] , a n d a m o r e r e c e n t p a p e r [ 2 9 ] ) . T h e P S W F a r e r e a l e i g e n f u n c t i o n s o f t h e o p e r a t o r F

c in (7.9) withe i g e n v a l u e s λ

j , j =





364 BEYLKIN AND MONZÓN

By setting

αl =wl

M−1∑
j=0

ψj(b/c)ψj(tl), (8.18)

and observing that |λM | ≈ ε and that |λj |  |λM | for j >M , we obtain (8.5) and (8.6).

We now construct two useful bases as linear combinations of the functions {eictlx}Ml=1.
First, let us consider the following algebraic eigenvalue problem,

M∑
l=1

wle
ictmtlAj (tl)= ηjAj(tm), (8.19)

where tl and wl are the same as in (8.1). By solving (8.19), we find ηj and Aj(tl). We then
consider functions Aj , j = 1, . . . ,M , defined for any x as

Aj(x)= 1

ηj

M∑
l=1

wleicxtlAj (tl). (8.20)

The functions Aj in (8.20) are linear combinations of the exponentials {
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matrices, there exists an orthonormal basis of real eigenvectors. Thus, computed via (8.22),
we assume q

j
l to be a real orthogonal matrix and then

M∑
j=1

√
wl Aj (tl)Aj(tm)

√
wm = δlm (8.23)

and
M∑
l=1

Aj(tl)wl Aj ′(tl)= δjj ′ . (8.24)

We have

∫ 1

−1
Aj(t)Aj ′(t) dt = 1

ηjηj ′

M∑
l,l′=1

wlwl′Aj(tl)Aj ′(tl′)
∫ 1

−1
eict (tl+tl′ ) dt (8.25)

and, from (8.1), we obtain∣∣∣∣∣
∫ 1

−1
Aj(t)Aj ′(t) dt − 1

ηjηj ′

M∑
l,l′=1

wlwl′Aj(tl)Aj ′(tl′)
M∑
k=1

wkeictk(tl+tl′ )
∣∣∣∣∣

≤ ε2 ∑M
k=1 wk

|ηj | |ηj ′ | . (8.26)
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Let us now construct interpolating bases as linear combinations of the exponentials
{eicxtl}nl=1. We define functions Rk , k = 1, . . . ,M , as

Rk(x)=
M∑
l=1

rkleicxtl , (8.27)

where

rkl =
M∑
j=1

wkAj (tk)
1

ηj
Aj (tl)wl =

M∑
j=1

√
wkq

j
k

1

ηj
q
j
l

√
wl. (8.28)

By direct evaluation in (8.19) and (8.23), we verify that functions Rk are interpolating,

Rk(tm)= δkm. (8.29)

Let us show that the integration of Rk(t)eiat , where |a| ≤ c, yields a one-point quadrature
rule of accuracy O(ε).

PROPOSITION 8.3. For |a| ≤ c, let

Ek =
∫ 1

−1
Rk(t)eiat dt −wkeiatk . (8.30)

Then we have

|Ek| ≤ ‖E‖2 ≤
√
M

maxk=1,...,M |wk|
mink=1,...,M |ηk| ε

2, (8.31)

where ‖E‖2 =
√∑M

k=1 |Ek|2.

Proof. Using (8.27) and (8.29),

M∑
l=1

rkl

M∑
m=1

wmeictm(tl+a/c) =
M∑

m=1

wmRk(tm)e
iatm =wkeiatk , (8.32)

and, therefore, Ek in (8.30) can be written as a matrix-vector multiplication Ek =∑M
l=1 rklsl, where

sl =
∫ 1

−1
eict (tl+a/c) dt −

M∑
m=1

wmeictm(tl+a/c). (8.33)

The inequality (8.31) is then obtained via the usual l2-norm estimates, taking into
account that the matrices qjk and q

j

l in (8.28) are orthogonal and that, for functions eiax ,
where |a| ≤ c, (8.1) implies |sl | ≤ ε2.

We have observed (via computation) that maxk=1,...,M |wk| = O(1) and
mink=1,...,M |ηk| = O(ε) in (8.31), thus resulting in ‖E‖2 = O(ε). Next we derive a weak
estimate showing that the functions Rk are close to being an interpolating basis for band-
limited exponentials.
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PROPOSITION 8.4. For every b, |b| ≤ c, let us consider the function

Fb(t)= eibt −
M∑
k=1

eibtkRk(t). (8.34)

Then, for every |a| ≤ c, we have

∣∣∣∣
∫ 1

−1
Fb(t)eiat dt

∣∣∣∣≤
(

1+M
maxk=1,...,M |wk|
mink=1,...,M |ηk|

)
ε2. (8.35)

Proof. Using (8.30), we have

∫ 1

−1
Fb(t)eiat dt =

∫ 1

−1
ei(b+a)t dt −

M∑
k=1

wk ei(b+a)tk −
M∑
k=1

eibtkEk, (8.36)

where

Ek =
∫ 1

−1
Rk(t)eiat dt −wkeiatk . (8.37)

Applying (8.1), we obtain

∣∣∣∣
∫ 1

−1
Fb(t)eiat dt

∣∣∣∣≤ ε2 +√M ‖E‖2. (8.38)

The estimate (8.35) then follows from Proposition 8.3.

Remark 8.2. Using the functions Rk , k = 1, . . . ,M , on a hierarchy of intervals, it
is possible to construct a multiresolution basis (for a finite number of scales) similar to
multiwavelet bases. We will consider such construction and its applications elsewhere.

8.1. Examples

For the weight

ω(t)=
{

1, t ∈ [−a, a], a ≤ 1/2,
0, otherwise,

(8.39)

we construct a 30-node quadrature formula so that (8.1) is satisfied with ε2 ≈ 10−15. We
�
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FIG. 9. Error in (8.1) for Example 1.

where P9 is the Legendre polynomial of degree 9. These three functions are not periodic
and we use

˜
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FIG. 11. Function g1(t) on the interval [−1,1].

FIG. 12. Difference g1(t)− g̃1(t) on the interval [−1,1].

FIG. 13. Function g2(t) on the interval [−1,1].
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FIG. 14. Difference g2(t)− g̃2(t) on the interval [−1,1].

FIG. 15. Function g3(t) on the interval [−1,1].

FIG. 16. Difference g3(t)− g̃3(t) on the interval [−1,1].
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exponential decay (see Fig. 1). For small eigenvalues, these quadratures are of practical
interest.

The remarkable feature of these quadratures is that they have nodes outside the support
of the measure and, as it turns out, the corresponding weights are negative and small,
roughly of the size of the eigenvalue. The case corresponding to the smallest eigenvalue is
equivalent to the classical Carathéodory representation.

As an application of the new quadratures, we show how to approximate and integrate
several (essentially) bandlimited functions. We also have constructed, using quadrature
nodes and for a given precision, an interpolating basis for bandlimited functions on an
interval.

In the paper we made a number of observations for which we do not have proofs.
Let us finish by stating two unresolved issues. First, it is desirable to have tight uniform
estimates for the L∞-norm of the PSWF (with a fixed bandlimiting constant) or, ideally,
for the eigenfunctions associated with more general weights. Second, we conjecture that
in Theorem 4.1, it is not necessary to require distinct roots for the eigenpolynomial since
it might be a consequence of the eigenvalue being simple. We have neither a proof nor a
counterexample at this time.

APPENDIX: PROOF OF THEOREM 2.2

We use a technique that goes back to [2] (see [28, Theorem 7.3] and [19, Chapter 5] for
more details) which involves the Fejér kernel,

FL(x)=
∑
|k|≤L

(
1− |k|

L+ 1

)
eiπkx = sin2((L+ 1)πx2 )

(L+ 1) sin2 πx
2

, (A.1)

for real x .
We need the following result.

THEOREM A.1 [19, Theorem 8, Chapter 5]. For |k| ≤N , let

ck =
M∑
j=1

ρjz
k
j ,

where ρj ≥ 0 and |zj | = 1. Then, for all L, 0≤ L≤N ,

(L+ 1)‖ρ‖2
2 ≤ c2

0 + 2
L∑

k=1

|ck|2.

Proof. Let ak = 1 − |k|/L+ 1 be the coefficients of the Fejér kernel FL and write
zj = eiπθj . Since ρj ≥ 0 and FL(θ)≥ 0 for all θ ,

∑
|k|≤L

ak|ck|2 =
∑
|k|≤L

ak
∑
j,l

ρj ρl

(
zj

zl

)k

=
∑
j,l

ρjρlFL(θj − θl)≥ FL(0)
M∑
j=1

ρ2
j = (L+ 1)

M∑
j=1

ρ2
j .

The theorem follows because a0 = 1 and ak ≤ 1.
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Proof of Theorem 2.2. We first use (2.1) to extend the definition of ck as c−k = ck

for k = 1, . . . ,N and c0 =∑M
j=1 ρj . We then define the Toeplitz matrix T N , (T N)kj =

(cj−k)0≤k,j≤N , and the polynomial

Q(z)=
M∏
j=1

(z− eiπθj )=
M∑
k=0

qkz
k.

Then q = (q0, . . . , qM,0, . . . ,0)t
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