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processing and data compression. In this paper we prove new theoretical results and develop numerica
algorithms for constructing such approximations. Since our numerical results are far better than our
current proofs indicate, we also point out unresolved issues in this emerging theory.

Since our formulation is somewhat unusual, we first provide two examples. Let us consider the identity

[e.e]

1 —tx
;=/e‘m (1)

0

for x > 0. This integral representation readily leads to an approximation of the fun§t'mma sum
of exponentials. In fact, for any fixegl> 0, there exist positive weights and nodes (exponents) of the
generalized Gaussian quadrature such that
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forall x in afinite interval, 0<6 x 1, and where the number of termdvs= O(logd). Theoretically
the existence of such approximations follows from [19-22]. This particular example has been examined
in [27] with the goal of using (2) for constructing fast algorithms. Specific exponents and weights are
provided there for several intervals and values,o that (2) can be verified explicitly. The approxima-
tion (2) has important applications to fast algorithms that we will consider below.

The second example is the Bessel functig(bx), whereb > 0 is a parameter arnxi € [0, 1]. Using
the approach developed in this paper, we obtain fax alh [0, 1],

(@)

X

€, 3

M
Jo(bX) — > pme™
m=1

where py, and 1, are now complex numbers and the number of teris,is remarkably small and
increases with ande asM = O(logb) + O(loge™2). In the sum (3) we will refer to the coefficients
Pm as weights and to the value®' as nodes; such terminology is natural since, as it turnsebutare
zeros of a certain polynomial as is usually the case for quadratures. We illustrate (3) in Figs. 1 and 2
by showing the error of the approximation and the location of the weightand (normalized) nodes
e™’® corresponding td = 100t ande ~ 10-1%. The number of nodes 8! = 28 and they accumulate
ate' ande~' as expected from the form of the approximation in (3) and the asymptotigfof large
argument,
A—-)e®+(1+i)e

2V/mb '
Also, since the real part of the exponents is always negativE;fRe 0, all nodes belong to the unit
disk. The approximation (3) with these 28 terms is remarkable in that there is no obvious integral, as
in (1), to represent the function and, thus, by some quadrature, obtain so few terms for a given accuracy
and parametdr. Clearly, there are many possible integrals in the complex plane to represent the Bessel
function but, unfortunately, there is no obvious criteria to choose a particular integral or contour. Finding
such a contour may be attempted via the steepest descent method, in this case starting from, e.g.,

Jo(b) ~

1
1 eibxt
Jo(bx) = —
Tt __ 12
A V11—t

dt. (4)
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Fig. 1. The functionlg(100mx) and the error (in logarithmic scale) of its 28-term approximation via (3).
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Fig. 2. The complex nodes (left) and weights (right) for the approximatialy @f the interval[0, 100r].
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However, different changes of variables in (4) will result in different contours with no a priori guidance
for the choice. Using, for example= sin(z), we have

n/2

1 .
Jo(bx):E / gibxsin@) g7 (5)
—1/2

and, withz = x + iy, we obtain the steepest descent path as the solution xacebst(y) = +1, where

x| m/2 andy = 0. The discretization of the integral along this path yields (3) but with more terms
than via our method. On the other hand, upon examination of the weights and nodes in Fig. 2, itis clear
that their location is not accidental. It appears as if our algorithm selects a contour on which a possible
integrand is least oscillatory, since that would reduce the number of necessary nodes.

We note that by optimizing the location of the nodes, we reduce their number to keep it well below the
number of terms needed in Fourier expansions or in more general approximations like those discussed
in [11]. We do not have a precise estimate for the optimal number of terms but we have observed that it
only depends logarithmically on the parameiemnd on the accuracy.

We have obtained similar results for a great variety of functions. The functions may be oscillatory,
periodic, nonperiodic, or singular. For a given accuracy, we have developed algorithms to obtain the
approximation with optimal or nearly optimal number of nodes and weights.

These examples motivate us to formulate the following approximation problem. Given the accuracy
€ >0, for a smooth functiorf (x) find the minimal (or nearly minimal) number of complex weigiig
and complex nodes" such that

e Vxel0,1]. (6)

M
F(X)— ) wre'™
m=1

For functions singular at = 0, we formulate (6) on the interv@d, 1], whered > 0 is a small parameter.
Depending on the function and/or problem under consideration, we may measure the approximation error
in (6) in a different way, e.g., we may use relative error.

As in our paper [11], we reformulate the continuous problem (6) as a discrete problem. Namely, given
2N + 1 values off (x) on a uniform grid in[0, 1] and a target accuragy> 0, we find the minimal
numberM of complex weightsv,, and complex nodeg, such that

K M

k

f <_2N) — E WmYpm
m=1

The sampling ratel? has to be chosen as to oversample) and guarantee that the function can be
accurately reconstructed from its samples. The nodes and weights in (7) depeatd@dN. Once they

are obtained, the continuous approximation (6) is defined using the same weights while the exponents
are set as

€ Vk,0 k 2N. @)

to match the form in (6). The nonlinear problem of finding the nodes and weights in (7) is split into two
problems: to obtain the nodes, we solve a singular value problem antlfirabts of a polynomial; to
obtain the weights, we use the nodes to solve a well-conditioned linear Vandermonde system.
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2. Preliminary considerations: properties of Hankel matrices
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2.2. Fast application of Hankel matrices

For any vectox = (X, . . . , Xn) denote byP, the polynomialPy(z) = Zk>0Xka of degree at mos\l.

We want to compute the vectbtx, whereH is the Hankel matrix defined by the vectoin CAN+L Let
L be anintegel. 2N + 1 anda = €' a root of unity. We write

hr=E
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Using (18) we expand the left-hand side of (26)

N 1 L-1 N 1 L-1

. s 3
E d|5+)nun:E E d;o E upo™ =T E diPy(a")a¥,
n=0 1=0 n=0 1=0

and, due to (17), the last term equals

Finally, since|d,| = 1 for all k, thel? norm ofd® equals 1. O
Next, we prove Theorem 3.

Proof. Part (1) is a direct consequence of (19), while part (3) follows from the first two. For part (2),
(26) implies
Hqu =1,

and with the notationj| - || for both the matrix 2-norm and the vectbi-norm, we derive||Hql|
”'T%“” = 1; thus, the norm is at least one. To see that it is at most ong,detN+! and use (13) and
(185 towriteforO k N,

1 = dIPV(GI) Kl
o= e 2 (H0)e

The right-hand side of the last equation is well defined for® L — 1, and corresponds to the DFT

of the vector&'PV—J%"). Since the DFT is unitary and,| = 1, we obtain

dl PV(GI)
JL

The last inequality holds for any vecter

2
2
= [vII*.

2
IHqVvll
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Fig. 3. Locations of all roots of the c-eigenpolynomial corresponding to the singular @gdua the approximation ofg in
[0,100m]. In practice, we only use the 28 roots inside the unit disk.

Jo(x) in the interval[0, 100]. The 28 significant weights (see Fig. 2) are associated with the nodes
inside the unit disk. We note that the nodes corresponding to the discarded terms are located outside bu
very close to the unit circle. The error of the 28-terms approximation is displayed in Fig. 1.

By keeping only the terms with significant weights, the singular value indeprovides aM-term
approximation of the sequenbg with error of the order oby. This behavior matches that of indices
of the singular values in AAK theory, where tivth singular value of the Hankel operator equals the
distance from that operator to the set of Hankel operators of rank ativhost

Currently we do not have a characterization of the conditions under which finite Hankel matrices may
satisfy the results of the infinite theory. We only note that assuming fast decay of the singular values
and thatN — M terms have small weights in (19), the approximatir= Z,'\n":lwmyrﬁ has the optimal
number of terms. Indeed, I&t, be the corresponding Hankel matrix for SinceHy has rankM, we
have

om |IH—Hpll<om+29d (27)

for somed > 0. Under the assumptions bif — M small weights and of fast decay of the singular values,
it is reasonable to expedtsmall enough so thaty +
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b= £ X 0 k 2N (28)
k = 2N ’

of the function to be approximated in the interyd) 1], our goal is to find an optimal (minimal) number
of nodesy, and weightswvy, such that

M
hg — Z merlr<1

m=1

<e Vk,0 k 2N. (29)

If the functionf (x) is properly oversampled, we also obtain the continuous approximation §7(x)f
over the intervalO0, b].
Let us describe the steps of the algorithm to obtain an approximation of the fulfictitth accuracye.

(1) Sample the functiofff as in (28) by choosing appropridieto achieve the necessary oversampling.
Using those samples define the corresponting 1 x N + 1 Hankel matrixHy = hy;.
(2) Find a c-eigenpaifo, u}, Hu = g0, with the c-eigenvalue close to the target accuracy We use
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Fig. 5. Nodes corresponding to singular values in the rangex 10715, 6.7 x 109 for the approximation o8g(100rx).

ate' ande~'. It is instructive to observe how roots in the first region stay some distance away from
these accumulation points. As we have mentioned in the Introduction, this accumulation can be expected
from the asymptotics of the Bessel function. More important from a computational perspective is that
the nodes slowly change their locations as we modify either the approximation interval (parametrized by
the constanb) or the accuracy (parametrized by the singular values). In this way, computation of roots
can be performed efficiently by, if necessary, obtaining first the nodes for a braal using them as
starting points in Newton’s method. To illustrate this property, in Fig. 5 we display the nodes for a range
of singular values varying from.B x 1072 to 4.7 x 10715,

As we noted for Fig. 2, the locations of nodes and weights suggest the existence of some integral
representation afp on a contour in the complex plane where the integrand is least oscillatory; integration
over such contour yields an efficient discretization that would correspond to the output of our algorithm.

The final approximation (6) exhibits an interesting property that we also have observed for other oscil-
latory functions. Suppose that we would like to obtain a decreasing function (an envelope) that touches
each of the local maxima of the Bessel function and, similarly, a increasing function going through each
of the local minima. The approximation (6) provides such functions in a natural way. Estimating the
absolute value of an exponential sum, we define its positive envelojie)eas

M
>
m=1

and itsnegative envelopas—enux). In Fig. 6 we display the Bessel functidg(100m x) together with
its envelopes. We note that we are not aware of any other simple method to obtain such envelopes.

M
D Wi [eR4mX = eny(x),

m=1

5.1. The Dirichlet kernel

Another representative example is the periodic Dirichlet kernel,

sinN X

1 < oni
D ] 2mikx _ , 30
=g k;ne N sinmx 30)

whereN = 2n + 1. We would like to construct an approximation (6)@f on the intervalO, 1]. Since
D, is an even function about/2 and it approaches 1 near= 1 (see Fig. 8), decaying exponentials
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Fig. 6. The Bessel functiodp (100 x) together with its envelope functions.



G. Beylkin, L. Monzén / Appl. Comput. Harmon. Anal. 19 (2005) 17-48 33

-1 0.4 1 -0.15 0.15

-1 0.4 1 -0.15

Fig. 7. The 22 nodes (left) and weights (right) for the approximation of the auxiliary fun@tigyin [0, 1].

We note thate~'| > 1 and, thus, the final approximation Bf, has nodes both inside and outside of the
unit disk. In Fig. 8 we display the Dirichlet kernBlsg and the error of the approximation with 44 terms
given by this construction. FdD,og We need 50 terms.

5.2. The kerneltog sirf(mx) andcot(1ix)

Let us consider two examples of important kernels in harmonic analysis. The function3ggein
is the kernel of the Neumann to Dirichlet map on the unit circle for functions harmonic outside the unit
disk whereas c@tix) is the Hilbert kernel for functions on the unit circle. We note that the Hilbert kernel
represents a singular operator.

We first find identities similar to (31). Using the reflection formula for the gamma function,

) @-x)=

we obtain

sin(mx)’ (34)

log (x)+ log (1—x)=|ogn—}
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Fig. 8. Dirichlet kerneDsg (top) and the error (in logarithmic scale) of its 44-term approximation via (33).

and

M M
T Cotmx — ) ple tnX 4 > ple w9l 2¢. (38)
m=1

m=1

5.3. Fast evaluation of one-dimensional kernels

Let us consider computing

1

9(x) = f K(x — y)f (y) dy. (39)

0
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at points{xn}r",‘:l, Xn € [0, 1]. In practice, we need to compute the sum

L
g() =Y K(a —y)F(y1), (40)
I=1
where we assume that the discretization of the integral (39) has already been performed by some appro-
priate quadrature and we include the quadrature weighftgyr).
The direct computation of (40) requirés - L operations. If we first obtain all-term exponential
approximation of the kernel, an elegant algorithm [28] computes the sum with acauracy
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6. Reduction of number of terms

The algorithm in Section 4 allow us to find approximations for a large variety of functions but it is
not well suited to deal with the extremely large ranges needed in some applications. Also, we would
like to have a mechanism to approximate functions that can be expressed in terms of other functions for
which we already have exponential sum approximations. Clearly, the nodes and weights for the sum or
product of two known approximations are readily available, but their number is suboptimal. Similarly, an
accurate but suboptimal expansion may be available, for example as the result of using some quadrature
rule or simply applying the discrete Fourier transform of the data to be approximated. We now show
how to take advantage of accurate but suboptimal approximations using a general approach on how to
reduce (optimize) the number of terms of a given exponential sum. It consists of applying the algorithm
of Section 4 to a function which is already a linear combination of exponentials on the irf&ripand
taking advantage of some simplifications which hold for this particular class of functions. We obtain a
fast algorithm for the following problem. Given

Mo
F(x)=) bpe ™, (43)

m=1

ande > 0, let us find a function (of the same form),

M
g(x) = Z Wpe ™™, (44)
m=1

with M < Mg and such that
|f(x)—g(x)|] & forxel0,1]. (45)

Without loss of generality, we assume distingtand nonzerd,, in (43). Following the algorithm in
Section 4, for some appropriaté > Mg, we construct the Hankel matrbt = hp, n,n"=0,...,N,
where

Mo

n _Imp
h, =f <ﬂ> = Z bne~2N". (46)
m=1
Denotingry, = e*%m, m=1,..., My, we have
Mo
ha="bmrn, (47)
m=1
and, therefore, a factorization of the Hankel matrix
H=VBV!, (48)
whereV is theN + 1 x Mg Vandermonde matrix
Vi =rX (49)

andB is the diagonal matrix with entrig®s, . .., by,). We note that the matrild has a large nullspace of
dimensiorN + 1— M. In fact, the nullspace consists of vectors with coordinates given by the coefficients
of the polynomialsl_[n'\fil(z — Im)p(2), wherep(z) is any polynomial of degree at mdst— M.



G. Beylkin, L. Monzén / Appl. Comput. Harmon. Anal. 19 (2005) 17-48

37






G. Beylkin, L. Monzén / Appl. Comput. Harmon. Anal. 19 (2005) 17-48 39

For the second part we mimic the steps used to obtain (52) and we also use (60). The last part follows

from (56) withz =,

FW=%—‘Q=% =

7. Approximation of power functions and separated representations
Let us discuss how to approximate the power function$, a > 0, with a linear combination of

Gaussians,

M
r =" wpe P
m=1
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satisfy

Dnga,r(s) = pﬁ (_rzezs)ga,r(s),

wherepg (x) are polynomials of degre®

Before ending this section, we would like to remark on another application of the reduction algorithm
to the summation of slowly convergent series. These results will appear separately and here we only note
that our approach yields an excellent rational approximation of functiong tikea > 0, providing a
numerical tool to obtain best order rational approximations as indicated by Newman [24] (see also [18,
p. 169]).

8. Conclusions

We have introduced a new approach, and associated algorithms, for the approximation of functions and
sequences by linear combination of exponentials with complex-valued exponents. Such approximations
obtained for a finite but arbitrary accuracy may be viewed as representations of functions which are more
efficient (significantly fewer terms) than the standard Fourier representations. These representations car
be used for a variety of purposes. For example, if used to represent kernels of operators, these approxima
tions yield fast algorithms for applying these operators to functions. For multi-dimensional operators, we
have shown how the approximationrof®, a > 0 leads to separated representations of Green’s functions
(e.g., the Poisson kernel).

We note that we just began developing the theory of such approximations and there are still many
guestions to be answered. We have indicated some of these questions but, in this paper, instead of con
centrating on the theoretical aspects we have chosen to emphasize examples and applications of thes
remarkable approximations.
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Appendix A

We show how to choose the parameters involved in the approximatiorPof > 0 by linear com-
bination of exponentials as well as estimate the number of terms. Theorem 9 follows by substituting
B %, r—r? 3 §%and choosindN = O(loge~?) in the next

Theorem A.1. Foranyp >0,0<8 1,and0O<e min{3, 5}, there exist positive numbeps, and
W, such that

M
r®—> wne™'| rPe foralls r 1 (A.1)
m=1
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with
cg(2N + 1)
i

M [B~'log4(Be)~* +log2
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whereh = b%‘ is the step sizdt] is the integer part of the real numhemh,, are the Bernoulli numbers,

andB,(t) the Bernoulli polynomials. For ak € [0, 1] andn 1 we have the inequalities (see, e.g., [14,
p. 474]),

[Ban(X)| |20 2 s 2
_ kK2 4m) 2
ol 20l @) 2. (2m)

k>1
We then estimate the error in (A.6) as

h 2N b N h 2n
4(2n) /]D f(t)\dt+4n2_;(2n) (ID n
4 =

b
/f(t)dt —TK
a
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1
21
therefore,(%)_ql e~1. Therefore, we set the following condition for the right end of the interval of
integration,

In(295~*In(q(3e) 1)) <b, (A.21)

which also implies (A.16).

a condition that follows from Lemma A.3 below. Singe 3, assumption (A.4) impliesthdd 2 and,

Lemma A.3. Let p, d, ande be positive numbers such thaé‘ls‘% ez and definety = In2p&—1 x
1
In(pd—te~?). Then the inequality
ePle—% < ¢ (A.22)
holds for allt  tg.

Taking the logarithm in both sides of (A.22) we det % < '%8 and introducing the new variable

t .
X = % 1, we obtain

Ine

In(pd~'x) —x < r (A.23)
or

c=Inpdle? <x—Inx.
Since 1- x —Inx for positivex, we have

c<2c—-In24+(1-c) 2c—In(2c),

and, thus, (A.23) holds for  2c sincex — Inx is increasing fox 1.
A.4. Condition forl and selection of the step sihe

Let us show by induction on 0, that for allp >0

f\D"f
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