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given accuracy ε > 0 and distance to the singularity δ > 0, the power functions r−β , β > 0, with a linear combination of
exponentials,∣∣∣∣∣r−β −

M∑
m=1

w



G. Beylkin, L. Monzón / Appl. Comput. Harmon. Anal. 28 (2010) 131–149 133
Proposition 1. Let us assume that (4) holds. For any ε > 0 and t0 ∈ R, we have∣∣∣∣
∫
R

f (t)dt − h
∑
n∈Z

f (t0 + nh)

∣∣∣∣ � ε (6)

provided that the Fourier transform of f satisfies∣∣ f̂ (ξ)
∣∣ � c1e−q|ξ |, (7)

for some positive constants c1 , q and step size h � q/ log(2c1ε−1 + 1) or, alternatively,∣∣ f̂ (ξ)
∣∣ � c2

|ξ |q , for |ξ | � R, (8)

for some positive constants c2 , R, q and step size h � min{1/R, ε1/q(2c2ζ(q))−1/q}, where ζ(q) is the Riemann Zeta function.

Proof. From (5), it is enough to derive conditions on h so that
∑

n �=0 | f̂ ( n
h )| � ε . Under (7), we have

∑
n �=0

∣∣∣∣ f̂

∗∗∗∗53≈(c)[3[m≈- ∞ [{≈9.73′∞[{≈9.37|≈/F4 ∞ [{≈7.∞∈6∞∞e
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where

S∞(r) = h

�(β)

∑
n∈Z

eβ(t0+nh)e−et0+nhr . (13)

Next we show how to choose h = h(ε, β) as to yield∑
n �=0

|�(β + 2π i n
h )|

�(β)
< ε. (14)

Theorem 3. Given β > 0 and 0 < ε � 1, for any step size h such that

h � 2π

log3+ β log(cos1)−1 + logε−1
, (15)

and any t0 ∈ R we have

|r−β − S∞(r)|
r−β

� ε, for all r > 0, (16)

where S∞ is given in (13).

We note that S∞(r) in (16) provides a uniform approximation with respect to r. Therefore, for a given accuracy ε and
power β
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Lemma 4. For all r > 0,

S F (r) < S∞(r) < (ε + 1)r−β.

This estimate shows that our approximation, S F (r), is effectively bounded by the true function on the whole positive axis,
a result already used in [12]. In Section 4 we use this lemma to simplify and correct some estimates in [9].

Proof. The first inequality follows since f in (10) is a positive function for all positive r and β . The second inequality
follows from (16). �

The number of terms in S F depends on the parameters β , δ and ε , and is described in

Theorem 5. For any β > 0, δ > 0, and 1Tj
/F7 1 Tf
9.7304 0 0 9.7304 303S
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By selecting M and N , we bound both tails by ε in some target range r ∈ [δ,1]. To majorate both tails by an integral,
consider again the integrand fβ,r(y) in (9)–(10) which has a global maximum at y0 = log(r−1β). Hence, for any M satisfying
tM � logβ the function fβ,r(y) is decreasing on (−∞, tM) for all r ∈ (0,1] and we may estimate the lower tail TM(r) by the
associated integral

TM(r) � rβ

�(β)

tM∫
−∞

e−rey+β y dy � 1

�(β)

tM∫
−∞

e−ey+β y dy (27)

= 1

�(β)

etM∫
0

e−ssβ−1 ds = 1− �(β, etM )

�(β)
, (28)

where

�(β, x) =
∞∫

x

e−ssβ−1 ds

is the incomplete Gamma function. We note that tM does not depend on δ.
Similarly, with N satisfying

tN � log
(
δ−1β

)
, (29)

the corresponding upper tail satisfies

T N(r) � rβ

�(β)

∞∫
tN

e−rey+β y dy = 1

�(β)

∞∫
retN

e−ssβ−1 ds,

for all r ∈ [δ,1] and we obtain

T N(r) � �(β, δetN )

�(β)
. (30)

Since

lim
x→0

�(β, x)

�(β)
= 1 and lim

x→∞
�(β, x)

�(β)
= 0,

we may achieve any target accuracy ε by defining t∗ and t∗ as solutions of the equations,

1− �(β, et∗)

�(β)
= ε, (31)

and

�(β, δet�
)

�(β)
= ε. (32)

To establish corresponding integers M∗ and N∗ in the definition of S F , we may have to modify slightly t∗ , t∗ , or h and
select t0, so that both (t∗ − t0)/h and (t∗ − t0)/h are integers. We prove

Lemma 7. For all β > 0, δ > 0 and 1/e � ε > 0, the solution t∗ of (31) does not depend on δ and satisfies

t∗ � logε�(1 + β)

β
= 1

β
logε + log�(1 + β)

1
β . (33)

The solution t∗ of (32) has a weak dependence on ε and satisfies

t∗ � log δ−1 + log logε−1 + logβ + 1

2
. (34)

To compute t∗ and t∗ , we may use Newton’s method with initial values for the iteration satisfying (33)–(34). We also
use the lemma to estimate the number of terms in S F in Theorem 5. The proof of Lemma 7 is given in Appendix A.2.

The rate of decay of the integrand in (9)–(10) is much slower at −∞ than at +∞ and, for this reason, the equally
spaced discretization S F of the integral, although quite reasonable, still produces too many terms as the exponents ehn in
(21) become small (e.g., for negative n). As it was pointed out in [16], the number of terms in (21) may be reduced further.
In Section 3 we provide a new simple method for this purpose.
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Proposition 8. For any δ > 0, and ε > 0, there exist a step size h and a positive integer M such that∣∣e−xy − Ge(x, y)
∣∣ � ε, for xy � δ, (41)

where

Ge(x, y) = hx

2
√

π

M∑
j





140 G. Beylkin, L. Monzón / Appl. Comput. Harmon. Anal. 28 (2010) 131–149



G. Beylkin, L. Monzón / Appl. Comput. Harmon. Anal. 28 (2010) 131–149 141
be an approximation of the kernel by Gaussians valid for δ � r � 1. Then, for any bounded, compactly supported function f in D and
x ∈ D, we have∣∣∣∣

∫
B1

‖y‖−α f (x + y)dy −
∫
B1

G F
(‖y‖) f (x + y)dy

∣∣∣∣ �
(
ε + (2 + ε)δd−α

) ωd−1

d − α
‖ f ‖∞.

Proof. Consider the ball Bδ





G. Beylkin, L. Monzón / Appl. Comput. Harmon. Anal. 28 (2010) 131–149 143
A harmonic function u(z, x) in the upper half-space z > 0, satisfying uzz + �xu = 0 and u(0, x) = u0(x), may be written
as

u(z, x) =
∫
Rd

P (z, x − y)u0(y)dy, z � 0, (56)

where

P (z, x) = 2

ωd

z

(z2 + ‖x‖2)(d+1)/2

is the Poisson kernel for the upper half-space. Using Theorem 3, for any ε > 0 and z > 0, we approximate the Poisson kernel
with

S∞
(
z2 + ‖x‖2) = zh

π(d+1)/2(
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for any 0 � n � 2N . In this formulation, a > 0 scales the problem to the interval [0,1] and ε is the accuracy sought.
Using coefficients wm in (66) and exponents ηm = 2N

a tm , we have an approximation to h(x) by a sum of exponentials
valid for all x ∈ [0,a],∣∣∣∣∣h(x) −

M∑
m=1

wme−ηmx

∣∣∣∣∣ < ε′, (67)

where ε′ is very close to ε provided that the function h is appropriately sampled in (66) to justify local interpolation.
The steps to achieve the approximation (66) are as follows:

• Build the (N + 1) × (N + 1) Hankel matrix Hkl = hk+l using the samples hn = h(a n
2N ), 0 � n � 2N .

• Find a vector u = (u0, . . . , uN ), satisfying Hu = σ u, with positive σ close to the target accuracy ε . The existence of such
vector u follows from Tagaki’s factorization (see [16, p. 22]); the singular value decomposition yields σ as a singular
value and u as a singular vector of H. We label the first M + 1 singular values of H in decreasing order σ0 � σ1 �
· · · � σM , where σM is chosen so that σM/σ0 ≈ ε . Typically, singular values decay rapidly and, thus, M = O(logε−1)

and M 	 N .
• Compute roots γm of the polynomial u((
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if we choose x = logε−1. Thus, our estimate for this range of β is

t̃∗ = log δ−1 + log logε−1. (70)

If β > 1, we have

�(β, x)

�(β)
� e

�(β)
xβ−1e−x � ε,

where the first inequality holds using (69) with

x > d(β − 1) (71)

where d = e/(e − 1) ≈ 1.582, and the second holds if, using Lemma 14, we consider a positive x such that

x � de>
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A.3. Proof of Theorem 5

In Section 2.1.1 we have already shown how to obtain (20) for some h satisfying (15) and t∗ and t∗ satisfying Lemma 7.
To simplify the approximation, we set t0 = 0 and

h̃ = 10

2 logε−1 + logβ + 2
.

To estimate the number of terms, it is enough to bound

t̃∗ − t̃∗
h̃

,

where t̃∗ , t̃∗ are the bounds in (33) and (34). We have

t̃∗ − t̃∗ = log δ−1 + 1

β
logε−1 + log logε−1 + log

(
β + 1

�(1 + β)
1
β

)
+ 1

2

� log δ−1 + 1

β
logε−1 + log logε−1 + 3

2

where we used Lemma 15.
The estimate (23) follows from (27)–(28).

Lemma 15. Let g(x) = �(x+1)
1
x

x+1 for x > 0
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