A_{pp}. Compute. $\sqrt{\sqrt{2}}$, 28 (2010) 131–149

Department of Applied Mathematics, University of Colorado, Boulder, CO 80309-0526, United States

article info abstract

Proposition 1. *Let us assume that* (4) *holds. For any* ≥ 0 *and* $t_0 \in \mathbb{R}$ *, we have*

$$
\left|\int\limits_{\mathbb R} f(t) dt - h \sum_{n \in \mathbb{Z}} f(t_0 + nh) \right| \leqslant \tag{6}
$$

provided that the Fourier transform of f satisfies

$$
|\hat{f}(t)| \leqslant c_1 e^{-q|t|},\tag{7}
$$

 f *for some positive constants* c_1 *,* q *and step size* $h \leqslant q^{\nearrow}$ \quad *(2* c_1 $^{-1}$ $+$ *1) or, alternatively,*

$$
|\hat{f}(t)| \leqslant \frac{c_2}{|t|^q}, \quad \text{for } |t| \geqslant R,
$$
 (8)

for some positive constants c_2 , R, q and step size $h\leqslant\nearrow(1/R,1/q(2c_2-(q))^{-1/q}),$ where $\;\;$ (q) is the Riemann Zeta function.

$$
\sum_{n\neq 0} \left| \hat{f} \right|
$$
 (7), (1)

 ω v

(a)
$$
a \log \frac{1}{2} \log a \log \frac{b \log \frac{1}{2} \log a}{1 - \log a} = \frac{b \log \frac{1}{2} \log a}{1 - \log a} = \frac{b \log a}{1 - \log a} = \frac{1}{2}
$$
\n(a)
$$
\frac{b \log a}{1 - \log a} = \frac{2}{1 - \log a} = \frac
$$

Theorem 3. Given ≥ 0 and $0 < \leq \leq 1$, for any step size h such that

$$
h \leqslant \frac{2}{3 + \sqrt{(1)^{-1} + \sqrt{-1}}},\tag{15}
$$

and any $t_0 \in \mathbb{R}$ *we have*

$$
\frac{|r^- - S_{\infty}(r)|}{r^-} \leqslant , \quad \text{for all } r > 0,
$$
\n
$$
(16)
$$

where S_{∞} *is given in* (13)*.*

$$
\mathbf{y} = \begin{bmatrix} \mathbf{y} & \mathbf{y} & \mathbf{y} \\ \mathbf{y} & \mathbf{y} & \mathbf{y} \\ \mathbf{y} & \mathbf{y} & \mathbf{y} \end{bmatrix} \begin{bmatrix} \mathbf{y} & \mathbf{y} & \mathbf{y} \\ \mathbf{y} & \mathbf{y} & \mathbf{y} \end{bmatrix} \begin{bmatrix} \mathbf{y} & \mathbf{y} & \mathbf{y} \\ \mathbf{y} & \mathbf{y} & \mathbf{y} \end{bmatrix} \begin{bmatrix} \mathbf{y} & \mathbf{y} & \mathbf{y} \\ \mathbf{y} & \mathbf{y} & \mathbf{y} \end{bmatrix}
$$

5. *For any* ≥ 0 , ≥ 0 , and 1. \mid 1 ≥ 9.7304 0 0 9.7304 303 ou8309o94 0 TD 0.2518 f4p -33.1058 -2.866 TD 0.0004 0 9.

7. *For all* ≥ 0 , ≥ 0 *and* $1/e \geq 0$, *the solution* t_* *of* (31) *does not depend on and satisfies*

$$
t_* \geqslant \frac{(1+1)}{2} = \frac{1}{2}, \qquad + \frac{1}{2} \qquad (1+1)^{\frac{1}{2}}.
$$

The solution t[∗] *of* (32) *has a weak dependence on and satisfies*

8. *For any* > 0 *, and* > 0 *, there exist a step size h and a positive integer M such that*

$$
\left|e^{-xy}-G_e(x,y)\right|\leqslant\quad \text{for } xy\geqslant\quad \ (41)
$$

where

$$
G_e(x, y) = \frac{hx}{2\sqrt{-}} \sum_{j=0}^{M} e^{-x^2}
$$

be an approximation of the kernel by Gaussians valid for - *r* - 1*. Then, for any bounded, compactly supported function f in D and* $x \in D$ *, we have* L. Monzón / Appl. Comput. Harmon. Anal. 28 (2010) 131–149
 $\begin{array}{c} \n\leftarrow$

s valid for $\leqslant r \leqslant 1$. Then, for any bounded, compactly supported function f in D and
 $\left. f(+, 0, d.)\right| \leqslant (-2 + 0, d - 1, d - 1, d)$

$$
\left|\int\limits_{B_1} \|\cdot\|^{-} f(\cdot + \cdot) d\cdot - \int\limits_{B_1} G_F(\|y\|) f(\cdot + \cdot) d\cdot \right| \leqslant (\cdot + (2 + \cdot)^{d-}) \frac{d-1}{d-} \|f\|_{\infty}.
$$

.
$$
\left|\sum_{i=1}^{d-1} \|\cdot\|_{\infty} \right|
$$

A.3. Proof of Theorem 5

