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Abstract. We introduce a new method for functional representation of os-
cillatory integrals within any user-supplied accuracy. Our approach is based

on robust methods for nonlinear approximation of functions via exponentials.

The complexity of evaluation of the resulting representations of the oscillatory
integrals does not depend or depends only mildly on the size of the parameter

responsible for the oscillatory behavior.

1. Introduction. Methods for asymptotic evaluation of oscillatory integrals have

http://dx.doi.org/10.3934/dcds.2016.36.4077
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parts in (1) yields the desired asymptotics. If at an isolated point x∗ 2 [�1; 1] one
or more derivatives of g vanish, then the asymptotics is obtained using the Taylor
expansion of g at x∗. The speci�c powers in the asymptotic expansion depend e.g.,
on the type of stationary points of g. Asymptotics expansions of this type are also
available in higher dimensions, see e.g., [34, 10].

More recently, Iserles and Norsett [26, 27] developed a Filon-type method for (1)
by assuming that the amplitude function f is well approximated by polynomials.
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2. Preliminaries. Our approach relies on algorithms for representing functions
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in [4] identi�es the nodes of the generalized Gaussian quadratures in (3) as zeros
of the Discrete Prolate Spheroidal Wave Functions (DPSWFs) [40], corresponding
to small eigenvalues. The size of the eigenvalue determines the accuracy of the
quadrature,
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While all �j < 1, j = 0; 1; : : :
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Since the coe�cients rkl in (14) are precomputed, this sequence of steps avoids the
numerical di�culties of �nding the coe�cients in (17
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3. Representation of Fourier-type integrals. As an example of the straight-
forward use of our techniques, we consider a linear phase g(x) = x in (1) and
compute

I(!) =

Z 1

−1

f(x)ei!xdx (21)

assuming that f is well approximated by bandlimited exponentials with bandlimit
c, where c� !. As in (17), for a target accuracy �, we construct the approximation�����f(x)�

MX
m=1

cme
ic�mx

����� � �; (22)

which immediately gives the explicit approximation�����I(!)�
MX
m=1

cme
i(c�m+!)sinc (c�m + !)

����� � �: (23)

Here the number of terms, M , is proportional to the bandlimit c and, therefore, the
integral in (21) can be e�ciently evaluated for any parameter ! at a cost indepen-
dent of its size.

3.1. A representative example. This example illustrates our approach not only
for a linear phase function
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Figure 2. Approximation of the integral (21) for the amplitude f
in (24) in the intervals [0; 100] (top) and [10000; 10100] (bottom).
Real part of f is displayed with dashes, imaginary part with dots
and absolute value with a solid line.
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approach reduces the problem to the computation of the �rst few moments,Z b

a

xkei!g(x)dx;

which are assumed to be known. Also, to avoid computation of derivatives of f , a
derivative-free variant is presented in [26].

We demonstrate how to construct a functional representation of such integrals
on the canonical example

I(n)(!) =

Z 1

−1

f(x)ei!x
n

dx; ! � 0; (26)

where f is only mildly oscillatory and n � 2 is an integer. The only stationary
point of this integral is at x∗ = 0 and we subdivide the original interval to isolate
the stationary point within a su�ciently small interval. We subdivide the interval
as follows,

[�1; 1] =
�
�1;�2−1

�
[ � � � [

�
�2−l;�2−l−1

�
[

� � � [
�
�2−L−1; 2−L−1

�
[ � � � (27)

[
�
2−l−1; 2−l

�
[ � � � [

�
2−1; 1

�
so that we approach the stationary point in a hierarchical fashion. The parameter
L describing the number of levels of subdivision is chosen later. On all subintervals,
except the one about zero, we perform a change of variables in order to use (25).
We show below that, since the intervals become smaller when approaching the
stationary point x∗ = 0, the bandlimit of the integrand decreases exponentially
fast. Once we reach a su�ciently small bandlimit, we evaluate the integral over�
�2−L−1; 2−L−1

�
directly. Hence, by �rst �xing the desired range of values of !,

the cost of evaluation depends only logarithmically on the maximum size of !, i.e.,
it is proportional to the number of levels L in (27).

Since the intervals in (27) are symmetric about zero, we discuss only those where
x > 0. Denoting

I
(n)
l (!) =

Z 2�l

2�l�1

f(x)ei!x
n

dx;

the change of variables y =
�
2n(l+1)+1xn � (2n + 1)

�
= (2n � 1) yields

I
(n)
l (!) =

e
i

(2n+1)

2n(l+1)+1
!

2l+1

1

n

�
2n � 1

2

� 1
n
Z 1

�1

f

0B@
�

2n�1
2

y + 2n+1
2

� 1
n

2l+1

1CA e
i

(2n�1)

2n(l+1)+1
!y�

y + 2n+1
2n�1

�n�1
n

dy:

(28)

Hence, for any target accuracy, we can always �nd a value of L such that the

contribution of I
(n)
l (!) for l > L is negligible. We note that the bandlimit of the

exponential e
i

(2n�1)
2n(l+1)+1

!y
in (28) decreases exponentially fast as the parameter l
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and obtain

I
(n)
l (!) � e

i
(2n+1)

2n(l+1)+1
!

2l
1

n

�
2n � 1

2

� 1
n

MX
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and substitute in (32) to obtain

F (�; p; a) =
1

� (�)

Z ∞
0

t�−1e−at
Z 1

−1

e(ip−t)ydydt

=
eip

� (�)

Z ∞
0

t�−1e−(a+1)t

ip� t
dt� e−ip

� (�)

Z ∞
0

t�−1e−(a−1)t

ip� t
dt:

Using [35, 8.6.4], we arrive at

F (�; p; a) = ie−i(ap+
3
2��)p1−� [� (1� �;�i (a+ 1) p)� � (1� �;�i (a� 1) p)] ;

where � (�; z
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where �J � j � J , J =
��
�!
� � 1

�
=2
�
. Our assumption on �! implies that J � 1.

We have

Iem (!) =

JX
j=−J

Z �
�! (2j+1)

�
�! (2j−1)

eic�mxe� sin!(�x+�)dx

+

Z 1

�
�! (2J+1)

eic�mxe� sin!(�x+�)dx

+

Z − �
�! (2J+1)

−1

eic�mxe� sin!(�x+�)dx: (37)

We note that J � ! and that �= (�!) � 1=3. Changing variables

x =
�

�!
(y + 2j) ;

in the integrals under the sum, we obtain

JX
j=−J

Z �
�! (2j+1)

�
�! (2j−1)

eic�mxe� sin!(�x+�)dx =

�

�!

0@ JX
j=−J

eic�m
2�
�! j

1AZ 1

−1

eic�m
�
�! ye� sin(�y+�!)dy:

For the integral over the interval [� (2J + 1) = (�!) ; 1], we change variables

x =
�

�!
(py + q) ;

where

p =
�!
� � (2J + 1)

2
;

q =
�!
� + (2J + 1)

2
: (38)

We obtainZ 1

�
�! (2J+1)

eic�mxe� sin!(�x+�)dx =
�p

�!
eic�m

�
�! q

Z 1

−1

eic�m
�
�! pye� sin(�py+�q+�!)dy:

Since

J �
�!
� � 1

2
< J + 1;

we observe that p 2 [0; 1) and, therefore, �p= (�!) 2 (0; 1=3). For the integral over
the interval [�1;�� (2J + 1) = (�!)], the change of variables x = �y reduces the
problem to an integral of the previous type. Consequently, we arrive at

Iem (!) =
� (2J + 1)

�!
�m (�!)um (�!; �!; �) +

�p

�!
u0 (�!; �!; �) ;

where

�m (�!) =
1

2J + 1

JX
j=−J

eic�m
2�
�! j =

sin
�
c�m

�
�! (2J + 1)

�
(2J + 1) sin

�
c�m

�
�!

� ; (39)

um (�!; �!; �) =

Z 1

−1

eic�m
�
�! ye� sin(�y+�!)dy;
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and

u0 (�!; �!; �) = eic�m
�q
�!

Z 1

−1

eic�m
�
�! pye� sin(�py+�q+�!)dy

+ e−ic�m
�q
�!

Z 1

−1

e−ic�m
�
�! pye−� sin(�py+�q−�!)dy:

The integrals um (�!; �!; �) are easy to evaluate using quadratures in [4] since,
for large !, the bandlimit of the integrand can be bound for large ! as shown
below. Recall that, for small !, the integral is evaluated directly. Unlike in [15],
our approximation is not asymptotic and may be used for all ! � 0.

In order to estimate the bandlimit of the integrand in the representation of the
functions um, it is enough to estimate the bandlimit of the function h (y) = e� sin(qy);
for q 2 (0; �], � 2 C, � 6= 0, and y 2 [�1; 1]. Using the expansion [1, 9.6.33] with
z = �� and t = ieiqy, we obtain

e� sin qy =
X
n∈Z

i−nIn (�) einqy;

where In is a modi�ed Bessel function of order n, In (�) = i−nJn (i�). Therefore,
for accuracy �, it is enough to �nd n0 > 0 such that

jIn (�)j < �; n � n0;

yielding q �n0 as the estimate for the bandlimit. From the asymptotic expansion [1,
9.3.1] for large orders n, we obtain

In (�) � 1p
2�n

� e
n

�n ��
2

�n
:

Using Stirling’s formula, we concludeF1 9.9626 Tf 6.428 17.89 17.8/F11 9. 0 Td.99.67121n

:
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Figure 3. Evaluation of the integral (33), with parameters de-
scribed in (4.1.1), for ! in the intervals [0; 30], [1000; 1030] and
[100000;
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Next, substituting (42) into (41), we obtain the approximation�����f̂(�; �)� 2�ab

MX
m=1

wme
−2��m�

p
a2 cos2 �+b2 sin2 �

����� � �: (43)

We note that a representation of f̂ in a basis would require a large number of terms
essentially dictated by Nyquist sampling criterion. In contrast our nonlinear ap-
proximation (43) circumvents Nyquist constraint and only requires a small number
of terms, M .

5.1. One-dimensional oscillatory integral transforms. We now consider the
Fourier transform of a radial function f(x) = f(

p
x2

1 + x2
2 + � � �+ x2

d) in dimension
d. Since the Fourier transform of f is also radial,

f̂ (y) = u

�q
y2

1 + y2
2 + � � �+ y2

d

�
;

it is easy to see (e.g., by Bochner’s theorem [20, pp. 247]), that the univariate
function u (�) is obtained via the Hankel transform,

u (�) = (2�)
d
2

Z ∞
0

f(t)td−1 (�t)−( d2−1)J d
2−1 (�t) dt; (44)

where J d
2−1 is the Bessel function of order d

2 � 1 and � � 0. We note that if f has

singularities, then the decay of u is slow. Writing u as

u(�) =

Z ∞
0

~f(t) (�t)−�J�(�t) dt; (45)

where � = d=2 � 1 and ~f (t) = (2�)
d
2 f(t)td−1, we observe that the kernel (�t)−�

J�(�t) is an oscillatory function. Instead of discretizing (45), we will approximate

both, the function ~f and the kernel by short sums of exponentials. As a consequence,
we will obtain a rational representation for the function u(�).

First, by an analysis similar to the one in [2, p. 203], we express the kernel
function x−�J�(x) as a Laplace type integral,

x−�J�(x) =

Z
�

a(z)e−zxdz =

Z
R
a(
 (s))
′ (s) e−
(s)xds �

MX
m=1

ame
−�mx; (46)

where the contour � = f
 (t) : t 2 Rg is in the positive half plane, am; �m 2 C with
Re (�m) > 0, x > 0, and

a(z) =
2−�

�
1 + z2

��−1=2

p
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product of radial functions and spherical harmonics since this more general case can
also be reduced to the evaluation of Hankel transforms [2, Thms 9.10.3 and 9.10.5].

Remark 6. We have several choices [4, 5, 6, 7] on how to e�ciently approximate
~f in (50) and this decision depends on properties of the functions ~f and how we
would like to represent the function u.

6. Conclusions. As we have demonstrated, using nonlinear approximation of func-
tions via exponentials (similarly, in other situations via Gaussians or rational func-
tions) can drastically simplify the evaluation of oscillatory integrals. Indeed, as
a result of such approximations, the integrals are evaluated explicitly and yield a
functional representation within any user-selected accuracy.

Appendix.

Proof of Lemma 2.2.

Proof. We start by demonstrating that u in (7) can also be written as

u (x) =

MX
l=1

eic�l�Rl (x) : (52)

Indeed, using (14) and that the matrix rkl in (15) is symmetric, we obtain

MX
m=1

Rm (�) eic�mx =

MX
m=1

MX
l=1

rmle
ic�l�eic�mx =

MX
l=1

eic�l�

 
MX
m=1

rlme
ic�mx

!
;

which yields (52).
Next, substituting x = �m in (52), we obtain the exact collocation identity

eic�m� = u (�m) ; l = 1; : : : ;M: (53)

De�ning the function

� (x) =
��eic�x � u (x)

��2 = 1�
MX
m=1

Rm (�) eic(�m−�)x �
MX
m=1

Rm (�)e−ic(�m−�)x

+

MX
m;n=1

Rm (�)Rn (�)eic(�m−�n)x;

we observe that it is a linear combination of exponentials with bandlimit at most
2c, so that we can write

� (x) =

LX
l=1

�le
2ic�lx;

with j�lj � 1. Integrating � (x) and approximating the integral by the quadrature
(5), we derive the inequality�����

Z 1
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and it remains to estimate the value of the constant (
P
l j�lj)

1
2 . Since

X
l

j�lj � 1 + 2

MX
m=1

jRm (�)j+

 
MX
m=1

jRm (�)j

!2

=

 
1 +

MX
m=1

jRm (�)j

!2

;

the results follows.

Regarding an estimate of the L∞ approximation error, the analysis in [4] assumed
that the PSWFs have a uniform bound. However, the proven estimate (see [11,
Theorem 3.1] and [36]) is

k jk∞ � �
p
j + 1; j � 2c

�
; (54)

where � � 2:35. A possible improvement k jk∞ �
p
j + 1=2 is suggested by the

numerical evidence in [36, 37]. This potential growth of the uniform norm does not
change the conclusion in [4] since the contribution of PSWFs with large indices is
completely suppressed by the exponential decay of the corresponding eigenvalues.
We have

Lemma 6.1. For any target accuracy � > 0 and for any � 2 [�1; 1] consider the
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and Z 1

−1

MX
l=1

wle
ic�l(x−t) j (t) dt =

MX
l=1

wle
ic�lx�j j (�l)

which, by (6), leads to the estimate������j j (x)� c�j
2�

MX
l=1

wle
ic�lx j (�l�

�
�
�d [(�)]TJ/F11 9.9626 Tf 3.321 6-1.51[())]TJ/17 6.9738 Tf 2.56 0 92.43Td [(ic�)11 9.9626 Tf 4.981 09.118 .9826

2 1
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