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The relation is considered between the distorted-wave Born (DWB) and the distorted-wave Rytov (DWR) approxima-

tions. Analyzing the Helmholtz equation, it is shown that the formal asymptotic justification of DWB and DWR approxi-
mations remains the same as that of the ordinary ones. A relation is derived between the first DWB and DWR approxima-
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This paper considers the relation between the dis- where eis a small paraincier. The index of refraction
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(DWR) approx1mat10ns The ordmary Born [1] and case of the ordinary Born and Rytov approximations

apphcatlons ranging from nuclear phys1cs to seismic if we seek a SOlllthIl of eq. (1) in the form

exploration (see refs. [4—7], for example). Within T d ) =TT (v k) # fLH Iy ¥) s ‘ R

known solution to a simpler equation. The only dif- ficients of like powers of €, we arrive at equations for

ference between the ordinary and distorted-wave ap- the functions U]-(x,k), j=0,1..:
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To ﬂlustrate this we consider the Helmholtz equa-
tion and show that the formal asymptotic justification
of DWB and DWR approximations remains the same
as that of the ordinary ones [3]. We also derive a rela-
tion between the ﬁrst DWB and DWR approx1mat10ns
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Ilii itljen have [JZ(x k) = exnl+iky -v)_where v is a unit ,
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approximation can be obtained if we seek a solution
of eq. (1) in the form
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D(x,k) = Dy (x,k) + e, (x k) + 2D, (x,k) + ... (6)

Using (5) and (1) we find that the phase function
P(x,k) satisfies the equation

(V)2 — n? + (1/ik)V2d = 0. )

We now substitute the series (6) in (7), equate the
coefficients of powers of €, and arrive at equations for
functions fIJj(x,k),j =0,1...:

(V@) + (1/ik)V> 0, —nt =0,

2V, - VO, + (1/k)V2d, —n, =0,

208, - VO, + (1/ik)V2®, —ny +(VE;)? =0,

(8

Eqgs. (5) and (6) are the DWR approximation and eqs.
(8) show how to compute the consecutive terms of the
series for ®. Let us now compare DWB and DWR ap-
proximations. It is easy to estimate the relative error
of the mth DWR approximation. Indeed, it follows
from (5) and (6) that

U -~ Ug)/U= 1- exp(*ik 2 ede.)
j=Em+1 /

=0 (ke o ), ©)

where Ug? is the mth Rytov approximation,
m
UR (x.k) = exp(ik Jg e]<I>].(x,k)).

To estimate the relative error of the DWB approxi-
mation we first establish relations between terms in
series in (6) and (3). We have
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The mth DWB approximation is the sum of the m + 1
first terms in (10},
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Thereby, we have
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Specifying the estimates (9) and (11) to the first

DWB and DWR approximations, we have

w-ubyu=1- exp(—ik ,Q ejfbj)

= O(ike*®,), (92)

and
1 ~ (20 112452

(U~ Up)IU = O(e*(ikd, — 3k°P7)). (11a)
When x and & are fixed, estimates in (9) and (11) dem-
onstrate that both DWB and DWR approximations are
of the same order of accuracy with respect to €. Clearly,
however, the errors in these two approximations will
behave differently as functions of x and &.

Let us consider now the relation between the first
DWB and the first DWR approximations. This relation
for ordinary Born and Rytov approximations is of im-

portance in linearized inverse scattering problems [7].
We set

@, = e Moy, (12)

and obtain from (8) that the function W, satisfies the
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Also, from expressions (6) and (12) we have
1 _ -ik®o
dp =D, +ee W,. (14)

Comparing (13) and the equation for the function U;
in (4) and using (14) we arrive at the relation between
the first DWB and DWR approximations,

@l =&+ (e/i)e*Poy,,
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of refraction be as follows

n*(y,z)=1+n(»,2), (16)
where
n(y,z2)=n;(2)=0, z<0;

=¢®> -1, z>0 a7

and a is a positive constant. Comparing (16) with (2)
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If ng(x) = 1, relation (15) reduces to the well-known
relation between classical Born and Rytov approxima-
tions [8].

The first DWR and DWB approximations are always

s ,

1 = T

explik(y sin 6 + z cos 9)],

where 8 is a fixed angle and % is the wave number, can
be solved explicitly. We have the following expressions
for the field

u(y,z) = explik(y sin 6 + z cos )]

+R exp[ik(y sin 8 — z cos 6)], z<0;

timates in (9a) and (11a). To show this, we provide a
simple example, Since DWR and DWB do not differ
from ordinary Rytov and Born approximations with
respect to this property, our example deals with the
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(18)

where

a= (a2 — l)/cos26.
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To obtain the Rytov approximation to the field in
(18) using a constant background with the index of re-
fraction n(z) =1 we first compute the phase of the back-
ground field. The phase of the background field is the
phase of the plane wave which is as follows

P, =y sinf +z cos 6.

The first perturbation of the phase, the function P,
depends only on z and satisfies the corresponding equa-
tion in (8) which in this case reduces to

d®,(z) | d’®,(2)
+-—

2 cos @ ~=n,(2).

(19).

where n; (z) is described in (17). ®;(z) and its normal
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homogeneous halfspaces.

Using these continuity conditions together with the
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ytov approximation provides a reasonable ans-
(19) and arrive at wer.

The same conclusion about the behavior of Born

©,(,5)=2,@) and Rytov approximations can be drawn from esti-

= —(af4ik) exp(—2ikz cos 8), z<O0:; mates (9a) and (11a). Using corresponding equation in
Therefore, the first Rytov approximation to the field ees smoTom mme s
is g f; _ L2, kzros ) s

u(y,z)=explik(y sin 6 + z cos ) = —gikza cos6+3%a , z>0.
e b e e e 1
. . tion (9a), the estimate of the relative error of the Born
= exp[ik(y sin @ +z cos ) approximation (11a) has an extra term %k2<l>%. It fol-
+ikzacos 6 — 1a], z>0. @) lows from (20) that this term is as follows

1,252(0 = 1 2 )
Similar considerations of eq. (4) for the first Born ap- 2k ®1(2) ne, 2<0;

proximation yield =1 az(kz cos§ — 1 /2i)2 . z>0,

B - . . +
u™(y,2) = explik(y sin 6 +z cos 6)] which predicts much faster accumulation of error in

_ %a explik(y sin & —z cos 8)], z<0; the Born approximation compared to the Rytov ap-
proximation for the transmitted field (z > 0).

=1 — %a(1 — 2ikz cos 8)] (22)
X exp[ik(y sin 6 + z cos 8)], z>0. References
Egs. (21) and (22) are obviously related through (15).
However, for a given value of z, their accuracy is quite {1] M. Born, Z. Physik 38 (1926) 803.
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matter how small the perturbation is. In contrast, the [8] A.Nayfeh, Perturbation methods (Wiley, New York, 1973).
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