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Abstract. We use generalized Gaussian quadratures for expo-



Using approximations of functions via exponentials instead of poly-
nomials have been considered in e.g., [7, 12, 26] and, recently, in e.g.,
[17, 18, 13, 20, 21], where in [13, 20, 21] authors use band-limited expo-
nentials with complex-valued exponents. In these papers the nodes are
chosen to be equally spaced and, thus, such methods may be viewed
as band-limited analogues of multistep schemes. As explained below,
our method, dubbed Band-limited Collocation Implicit Runge-Kutta
(BLC-IRK), uses unequally spaced nodes and is different from the ear-
lier approaches as in e.g., [1, 8].

It is well-known that choosing between equally spaced and unequally
spaced nodes on a specified time interval results in significantly different
properties of ODE solvers. For example, polynomial-based multistep
schemes have {Re(z) ≤ 0, z ∈ C} as the region of absolute stability
(A-stable) only if their order does not exceed 2, the so-called Dahlquist
barrier. In contrast, an A-stable implicit Runge-Kutta (IRK) scheme
may be of arbitrary order. A class of A-stable IRK schemes uses the
Gauss-Legendre quadrature nodes on each time interval and the order
of such methods is 2ν, where ν is the number of nodes (see, e.g., [16]).
A-stability assures that growth and decay of numerical solutions ex-



In this paper we demonstrate that, within IRK collocation methods,
quadratures based on polynomials may be replaced by quadratures for
band-limited exponentials. The nodes of these quadratures do not ac-
cumulate significantly toward the end points of an interval (a heuristic
reason for an improved arrangement of nodes is that the exponentials
do not grow anywhere within the interval). Our method addresses
numerical integration of ODEs whose solutions are well approximated
by band-limited exponentials. We note that band-limited exponentials
have been successfully used in problems of wave propagation [3] (see
also [29, 20]), where it is natural to approximate solutions by band-
limited functions.

Unlike the classical Gaussian quadratures for polynomials that in-
tegrate exactly a subspace of polynomials up to a fixed degree, the
Gaussian type quadratures for exponentials use a finite set of nodes
to integrate an infinite set of functions, namely,

{

eibx
}

|b|≤c
on the in-

terval |x| ≤ 1. As there is no way to accomplish this exactly, these
quadratures are constructed so that all exponentials with |b| ≤ c are
integrated with accuracy of at least ǫ, where ǫ is arbitrarily small but
finite. Such quadratures were constructed in [2] and, via a different
approach in [36] (see also [28]). As observed in [3], quadrature nodes of
this type do not concentrate excessively toward the end of the interval.
The density of nodes increases toward the end points of the interval
only by a factor that depends on the desired accuracy ǫ





in many cases leads to significant improvement in performance of al-
gorithms for interpolation, estimation and solving partial differential
equations [3, 29, 20].

2.2. Bases for band-limited functions. It is well-known that a
function whose Fourier Transform has compact support can not have
compact support itself unless it is identically zero. On the other hand,
in physics duration of all signals is finite and their frequency response
for all practical purposes is also band-limited. Thus, it is important to
identify classes of functions which are essentially time and frequency
limited. Towards this end, it is natural to analyze an operator whose
effect on a function is to truncate it both in the original and the Fourier
domains. Indeed, this has been the topic of a series of seminal papers
by Slepian, Landau and Pollak, [35, 22, 23, 31, 32, 33, 34], where they
observed (inter alia) that the eigenfunctions of such operator (see (2.2)
below) are the Prolate Spheroidal Wave Functions (PSWFs) of classical
Mathematical Physics.

While periodic band-limited functions may be expanded into Fourier
series, neither the Fourier series nor the Fourier integral may be used
efficiently for non-periodic functions on intervals. This motivates us
to consider a class of functions (not necessarily periodic) admitting a
representation via exponentials

{

eibx
}

|b|≤c
, x ∈ [−1, 1], with a fixed

parameter c (bandlimit). Following [2], let us consider the linear space
of functions

Ec =

{

u∈L∞([−1, 1]) | u(x) =
∑

k∈Z

ake
icbkx : {ak} k∈Z∈ l1, bk ∈ [−1, 1]

}

.



where the number of nodes, M = c/π + O (log c), is (nearly) optimal.
The nodes and weights maintain the natural symmetry, τk = −τM−k+1

and wk = wM−k+1.

Remark 2. The construction in [2] is more general and yields quadra-



similar to orthogonal polynomials; they are orthonormal, constitute a
Chebychev system, and admit a version of Gaussian quadratures [36].

Since the space Ec is dense in Bc (and vice versa) [2], we note that
the quadratures in [36] may potentially be used for the purposes of this
paper as well (the nodes of the quadratures in [36] and those used in
this paper are close but are not identical). Importantly, given accuracy
ǫ, the functions ψc

0, ψ
c
1, ψ

c
2, · · · , ψc

M−1 may be used as a basis for inter-
polation on the interval [−1, 1] with τ1, τ2, · · · , τM as the interpolation
nodes, provided that these are quadrature nodes constructed for the
bandlimit 2c and accuracy ǫ2. Given functions ψc

0, ψ
c
1, ψ

c
2, · · · , ψc

M−1,
we can construct an analogue of the Lagrange interpolating polynomi-
als, Rc

k(x) =
∑M−1

j=0 αkjψ
c
j(x), x ∈ [−1, 1], by solving

(2.6) δkl = Rc
k(τl) =

M−1
∑

j=0

αkjψ
c
j(τl)

for the coefficients αkj. The matrix ψc
j(τl) in (2.6) is well conditioned.

A well-known problem associated with the numerical use of orthog-
onal polynomials is concentration of their roots near the ends of the
interval. Let us consider the ratio

(2.7) r(M, ǫ) =
τ2 − τ1

τ⌊M/2⌋ − τ⌊M/2⌋−1
,

where “⌊M/2⌋





Following [2], we discretize (2.2) using nodes {τm}M
m=1 and weights

{wm}M
m=1 and obtain an algebraic eigenvalue problem,

(2.8)
M
∑

l=1

wle
icτmτlΨj(τl) = ηjΨj(τm).

The approximate PSWFs on [−1, 1] are then defined consistent with
(2.2) as

(2.9) Ψj(x) =
1

ηj

M
∑

l=1

wle
icxτlΨj(τl),

where ηj are the eigenvalues and Ψj(τl) the eigenvectors in (2.8). Fol-
lowing [2], we then define the interpolating basis for band-limited func-
tions as

(2.10) Rk(x) =
M
∑

l=1

rkl



where {τj}
M
j=1 are Gaussian nodes for band-limited exponentials on

[0, 1] (constructed for an appropriate bandlimit c and accuracy ǫ). We
approximate

(3.2) ‖f(tτ,y(tτ)) −
M
∑

j=1

f(tτj ,y(tτj))Rj(τ)‖ ≤ ǫ, τ ∈ [0, 1]

where Rj(τ) are interpolating basis functions associated with these
quadratures and briefly described in Section 2.3 (see [2, 3] for details).
Using (3.2), we replace f in (3.1) and evaluate y(tτ) at the quadrature
nodes yield2



so that the integral equation (3.1) may be written as

(3.5) y(t) = etLy



or
∣

∣

∣

∣

∫ 1

−1

(
∫ τ

−1

Rj(s) ds

)

Rk(τ) dτ − wk

∫ τk

−1

Rj(s) ds

∣

∣

∣

∣

< ǫ2,

and

(3.9)

∣

∣

∣

∣

∣

∫ 1

−1

Rk(τ) dτ −

M
∑

l=1

wlRk(τl)

∣

∣

∣

∣

∣

< ǫ2,

or
∣

∣

∣

∣

∫ 1

−1

Rk(s) ds− wk

∣

∣

∣

∣

< ǫ2.

Proof. The relations in (3.8) and (3.9) is the property of the quadrature,
since the bandlimit of the product Fj(τ)F ′

k(τ) is less or equal to 2c and
that of Rk(τ) is less or equal to c. Due to the interpolating property
of Rk(τ), we have
(3.10)

M
∑

l=1

wlFj(τl)F
′
k(τl) =

M
∑

l=1

(
∫ τl

−1

Rj(s) ds

)

wlRk(τl) = wk

∫ τk

−1

Rj(s) ds

and
M
∑

l=1

wlRk(τl) = wk

Also, by definition,
∫ 1

−1

Fj(τ)F ′
k(τ) dτ =

∫ 1

−1

(∫ τ

0

Rj(s) ds

)

Rk(τ) dτ,

and the result follows. �

Theorem 5. Let {τj}
M
j=1 be quadrature nodes of the quadrature for the

bandlimit 2c and accuracy ǫ2 and Rk(τ), Rk(τj) = δkj, k, j = 1, . . . ,M ,
the corresponding interpolating basis. Let us define weights for the
quadrature as

(3.11) wk =

∫ 1

−1

Rk(τ)dτ

and the integration matrix as

(3.12) Skj =

∫ 1

−1

(

∫ τ

−1
Rj(s) ds

)

Rk(τ) dτ

wk

, k, j = 1, . . . ,M.

Then

(3.13) wkSkj + wjSjk − wkwj = 0,

and the implicit scheme using these nodes and weights is symplectic.
12



Proof. Using Proposition 4, we observe that the weights defined in
(3.11) are the same (up to accuracy ǫ2) as those of the quadrature.
The result follows by setting Fk(τ) =

∫ τ

−1
Rk(τ) dτ , F ′

k(τ) = Rk(τ) and
integrating by parts to obtain

wkSkj + wjSjk − wkwj =

∫ 1

−1

Fj(τ)F ′
k(τ) dτ +

∫ 1

−1

Fk(τ)F ′
j(τ) dτ − wkwj

= Fj(1)Fk(1) − wkwj.

By the definition of the weights, we have Fk(1) = wk and, hence,
Fj(1)Fk(1) − wkwj = 0. �

3.4. Construction of the integration matrix. There are at least
three approaches to compute the integration matrix. Two of them,
presented in the Appendix, rely on Theorem 5 and differ in the con-
struction of interpolating basis functions. In what appears to be a
simpler approach, the integration matrix may also be obtained with-
out computing interpolating basis functions explicitly and, instead, us-
ing a collocation condition derived below together with the symplectic
condition (3.13).

We require that our method accurately solves the test problems

y′ = icτmy, y(−1) = e−icτm , m = 1, . . . ,M,

on the interval [−1, 1], where τm are the nodes of the quadrature.
Specifically, given solutions of these test problems, ym(t) = eicτmt, we
require that (3.3) holds at the nodes t = τk with accuracy ǫ,

(3.14)

∣

∣

∣

∣

∣

eicτmτk − e−icτm



Using (3.16) and casting (3.14) as an equality, we obtain equations for
the matrix entries Akj



3.5. A-stability of the BLC-IRK method. As shown in e.g. [16,
Section 4.3], in order to ascertain stability of an IRK method, it is
sufficient to consider the rational function

(3.19) r(z) = 1 + zwt(I − zS)−11,

where S is the integration matrix, w is a vector of weights and 1 is a
vector with all entries set to 1, and verify that |r(z)| ≤ 1 in the left half
of the complex plane, Re (z) ≤ 0. This function is an approximation
of the solution ezt at t = 1 of the test problem

y′ = zy, y(0) = 1

computed via (3.3) and (3.4) on the interval [0, 1]. If all poles of r(z)
have a positive real part, then it is sufficient to verify this inequality
only on the imaginary axis, z = iy, y ∈ R. In fact, it may be possible to
show that r(z) is unimodular on imaginary axis, |r(iy)| = 1, for y ∈ R.
Implicit Runge-Kutta methods based on Gauss-Legendre nodes are A-
stable (see e.g [16]) and, indeed, for these methods r(z) is unimodular
on imaginary axis.

Given an M×M matrix S with M1 complex eigenvalues and M2 real
eigenvalues implies that the function r(z) in (3.19) has 2M1 +M2 = M
poles. If this function is unimodular on the imaginary axis then it is
easy to show that it has a particular form,

(3.20) r(z) =

M1
∏

k=1

z + λ
−1

k

z − λ−1
k

z + λ−1
k

z − λ
−1

k

M2
∏

k′=1

z + λ−1
k′

z − λ−1
k′

.

Currently, we do not have an analytic proof of A-stability of BLC-IRK
method; instead we verify (3.20) numerically. We compute eigenvalues
of the integration matrix to obtain the poles of r(z) and check that
all eigenvalues have a positive real part separated from zero. For ex-
ample, the integration matrix for the BLC-IRK method with 64 nodes
(bandlimit c = 17π) has all eigenvalues with real part larger than
0.7 · 10−3(see Figure 3.1). One way to check that r(z) has the form

(3.20) is to compute r(−λ
−1

k ) for complex valued and r(−λ−1
k ) for real

valued eigenvalues in order to observe if these are its zeros. In fact, it
is the case with high (quadruple) precision.

One can argue heuristically that since a rational function with M
poles has at most 2M real parameters (since matrix S is real its eigen-
values appear in complex conjugate pairs) and since, by construction,
r(iy) for |y| ≤ c is an accurate approximation to eiy (which is obvi-
ously unimodular), r(z) is then unimodular. It remains to show it
rigorously; a possible proof may depend on demonstrating a conjecture
in Remark 6.

15





Thus, the only constraint on the size of the interval is the requirement
that the (standard) fixed point iteration for (3.6) converges .

Let Nit denote the number of iterations, which can either be set to a
fixed number or be determined adaptively. Labeling the intermediate
solutions in the iteration scheme as y(n), n = 1, . . . , Nit, we have

(1) Initialize y(1)(tτm) = y0, m = 1, . . . ,M .
(2) For n = 1, . . . , Nit

For k = 1, . . . ,M

(a) Update the solution at the node k:

y(n)(tτk) = etτkLy0 + t
∑M

j=1 Skj e
t(τk−τj)Lg(tτj,y

(n)(tτj))

(b) Update the right hand side at the node k: g(tτk, y
(n)(tτk))

We note that the updated value of y(n)(tτk) is used in the computation
at the next node τk+1 within the same iteration n. This modification of
the standard fixed point iteration is essential for a faster conver



gravitational model, µ is the Earth’s gravitational constant and R is
chosen to be the Earth’s equatorial radius. Choosing the Cartesian
coordinates, we write V (N) (r), r = (x, y, z), assuming that the values
V (N) (r) are evaluated via (4.1) by changing from the Cartesian to

the spherical coordinates, r =
√

x2 + y2 + z2, θ = arcsin(z/r) and
λ = arctan (y/x).

We formulate the system of ODEs in the Cartesian coordinates and
denote the solution as r(t) = (x(t), y(t), z(t)). Setting G(N) (r) =
∇V (N) (r), we consider the initial value problem
(4.3)

d2

dt2
r(t) = −G(N) (r(t)) , r(0) = r0 =





x0
y0
z0



 , r′(0) = v0 =





x′0
y′0
z′0



 .

We observe that the first few terms of the Earth’s gravitational mod-
els are large in comparison with the rest of the model terms. For ex-
ample, in EGM96 [25], the only non-zero coefficients for Y2(θ, λ) are
C̄20, C̄22



Next, let us write the orbit determination problem in a form that
conforms with the algorithm in Section 4.1. Effectively, we make use
of the fact that system (4.3) is of the second order. We define the six
component vector

u(t) =

[

r(t)





We then compute weights using (3.11),

wk =

∫ 1

−1

Rc
k(x)dx =

M−1
∑

j=0

αkj

∫ 1

−1

ψc
j(x)dx =

M−1
∑

j=0

αkjλjψ
c
j(0).

Next we define

Kc
l (x) =

∫ x

−1

Rc
l (s)ds =

M−1
∑

j=0

αlj

∫ x

−1

ψc
j(s)ds =

M−1
∑

j=0

αljΦ
c
j(x),

where

(6.2) Φc
j(x) =

∫ x

−1

ψc
j(s)ds.



Proof. Integrating (6.3) by parts, we obtain

(6.9) Ijj′ + Ij′j = Φc
j(1)Φc

j′(1) − Φc
j(−1)Φc

j′(−1) = λjλj′ψ
c
j(0)ψc

j′(0)

and, since ψj(0) = 0 if j is odd (due to parity of PSWFs), we arrive at
(6.5) and (6.6).

Using (6.2) and (6.1), we have

Φc
j(x) =

1

λj

∫ 1

−1

(∫ x

−1

eicysds

)

ψc
j(y)dy =

1

λj

∫ 1

−1

eicyx − e−icy

icy
ψc

j(y)dy,

and, thus,

Ijj′ =
1

λj

∫ 1

−1

[
∫ 1

−1

eicyx − e−icy

icy
ψc

j(y)dy

]

ψc
j′(x)dx

=
λj′

icλj

(
∫ 1

−1

ψc
j(y)

ψc
j′(y)

y
dy − ψc

j′(0)

∫ 1

−1

ψc
j(y)

y
e−icydy

)

.(6.10)

It follows from (6.10) that if j is even and j′ is odd (so that ψc
j′(0) = 0),

we obtain (6.7) and

Ij′j =
λj

icλj′

(
∫ 1

−1

ψc
j(y)

ψc
j′(y)

y
dy − ψc

j(0)

∫ 1

−1

ψc
j′(y)

y
e−icydy

)

.

Introducing

u(x) =

∫ 1

−1

ψc
j′(y)

y
e−icyxdy,

we have

u′(x) = −ic

∫ 1

−1

ψc
j′(y) e

−icyxdy = −icλj′ψ
c
j′(x)

so that

u(x) = u(a) − icλj′

∫ x

a

ψc
j′(s)ds.

Setting x = 1 and a



6.2. Computing integration matrix using approximate PSWFs.

If the interpolating basis for band-limited functions is defined via (2.10),
then the coefficients rkl are obtained using

(6.11) δkm = Rk(τm) =

M
∑

l=1

rkle
icτlτm

by inverting the matrix E = {eicτlτm}l,m=1,...M . We have

Kk(x) =

∫ x

−1

Rk(s)ds =

M
∑

l=1

rkl
eicτlx − e−icτl

icτl

and compute

wkSkl =

∫ 1

−1

Kl(x)Rk(x)dx

=
∑

j,j′=1,...M

rkjrlj′

∫ 1

−1

eicτjxe
icτj′x − e−icτj′

icτj′
dx

=
∑

j,j′=1,...M

rkjrlj′Gjj′,

where

Gjj′ = 2
sinc (c (τj + τj′)) − e−icτj′ sinc (cτj)

icτj′
.

Thus, we have

wkSkl =
(

E−1GE−1
)

kl
.
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