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Here K(x; y) 2 S0(R2) is the distribution kernel of T�,
given by

K(x; y) = [F−1
1 �](x− y; x) = L(x− y; x); (3.17)

where F1 denotes the Fourier transform with respect to the
�rst variable. To develop our approach, we need to specify
further the symbol class we are working with. We restrict
ourselves to the class of the so-called Calder·on�Zygmund
kernels, i.e., kernels K(x; y) such that

j@�x@�yK(x; y)j à C�;�
jx− yj1+�+� :

Let f(x) 2 L2(R), and let us compute the projection of T�f
onto Wj,

hT�f;  
j
ki

= 2−j=2
Z

R�R
L(x− y; x)f(y) (2−jx− k)dx dy: (3.18)

Let us focus on the integral with respect to x �rst. We write

Z
L(x− y; x)f(y) (2−jx− k)dx

=
Z
L(x− y; k2j) (2−jx− k)dx+ R(y; j; k); (3.19)

where R(y; j; k) is some remainder. It follows from general
arguments involving the vanishing moments of  (x) that

jR(y; j; k)j = O(2M(j−1=2)):

From now on, we assume that the remainder may be ne-
glected, i.e., that we are at a su�ciently �ne scale. Assum-
ing that we may change the order of summation in (3.18),
we arrive at an approximation

hT�f;  
j
ki

� 1
2�

Z
�(�; k2j) �f(�)eik2

j�m1(2j−1�) ��(2j−1�)d�: (3.20)

Repeating considerations of Section III.1, we construct the
4�-periodic function

m�(�; k; j) =
X
n2Z

m1(�+ 4�n)

� �(2−j+1(�+ 4�n); k2j)�[−2�;2�](�+ 4�n): (3.21)

Setting

m�(�; k; j) =
1p
2

X
l

b
j
k;le

il�=2; (3.22)

we obtain the Fourier coe�cients of m�(�; k; j)

b
j
k;l =

X
n

gn
1

4�

Z 2�

−2�
�(2−j+1�; k2j)ei(n−l=2)�d�: (3.23)

It is clear that the coe�cients b
j
k;l have the expected asymp-

totic behavior as l ! 1,

b
j
k;l = O(l−L−1): (3.24)

Finally, we obtain the algorithm for computing the wavelet
coe�cients in (3.18),

hT�f;  
j
ki =

X
l

b
j
k;ls

j−1
l : (3.25)

This expression is similar to (3.14), except that the sum is no
longer a convolution. Thus, strictly speaking, the algorithm
in (3.25) is not a �lter bank, since �lter bank algorithms are
usually understood to consist of convolutions.

III.3. Connection with BCR Approach

It is reasonable to expect that a subclass of Calder·on�
Zygmund operators (see e.g., vol. 2 of [17]) may be im-
plemented numerically via �lter banks. Let us consider the
class of symbols S0

1;1, where � 2 S0
1;1 satis�es

j@�� @
�
x �(�; x)j à C(�; �)(1 + j�j)�−�: (3.26)

It was shown in [3] that in wavelet bases operators of this
class may be represented by sparse matrices. All informa-
tion is contained in the following set of coe�cients:

�
j
kl = hT jk;  

j
l i

�
j
kl = hT�jk;  

j
l i

γ
j
kl = hT jk; �

j
l i; (3.27)

this gives rise to the NS-form, an alternative to the S-form
consisting of the elements hT jk;  

j0
k0 i (see [3] for more de-

tails).
To explain the relation of the �lter bank approach to that

using NS-form, let us consider wavelets with good localiza-
tion in the Fourier domain (e.g., Battle-Lemari·e wavelets),
so that for a given precision we need to consider �interac-
tion� between scales which are immediate neighbors. In this
case we may consider the simpli�ed S-form where only in-
teraction between neighboring scales is taken into account.
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