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This paper treats the linearized inverse scattering problem for the case of variable background
velocity and for an arbitrary configuration of sources and receivers. The linearized inverse
scattering problem is formulated in terms of an integral equation in a form which covers wave
propagation in fluids with constant and variable densities and in elastic solids. This integral
equation is connected with the causal generalized Radon transform (GRT), and an asymptotic
expansion of the solution of the integral equation is obtained using an inversion procedure for the
GRT. The first term of this asymptotic expansion is interpreted as a migration algorithm. As a

result, this paper contains a rigorous derivation of migration as a technique for imaging
discontinuities of parameters describing a medium. Also, a partial reconstruction operator is
explicitly derived for a limited aperture. When specialized to a constant background velocity and
specific source—receiver geometries our results are directly related to some known migration

algorithms.

I. INTRODUCTION

The interpretation of seismic reflection data, ultra-
sound reflectivity imaging in medical applications, and var-
ious other methods of nondestructive evaluation require a
solution to the inverse scattering problem. The inverse scat-
tering problem is nonlinear and different approximate solu-
tions have been suggested over the years. Some of the most
useful in practice are the so-called migration schemes in geo-
physics. References 1-9 contain examples of such algor-
ithms. By a migration scheme (algorithm) in this paper we
understand a technique of imaging discontinuities of param-
eters describing the medium.

It must be emphasized that the construction of these
approximate solutions involves (explicitly or implicitly) two
major, separate steps: the first step is a linearization of the
inverse problem and the second step is the solution of the
linearized inverse problem.

In this paper the linearization is accomplished by a per-
turbation technique equivalent to the distorted wave Born
approximation. We derive an integral equation formulation
of the linearized inverse scattering problem for the Helm-
holtz equation. Analogous integral equations can be derived
for fluids with variable density and for elastic solids.

The primary concern in this paper is the solution of the
linearized inverse scattering problem. It requires the inver-
sion of an integral operator with an oscillatory kernel. This
operator is related—via the one-dimensional Fourier trans-
form—to the causal generalized Radon transform (GRT).

The appearance of the GRT has a simple physical ex-
planation. In all cases where it is impossible to make mea-
surements directly inside the medium of interest, the only
feasible measurements are integrals of certain combinations
of parameters describing the medium. If these integrals are
line integrals or integrals over hyperplanes we are dealing
with the classical Radon transform.!® Integrals with a
weight function over more general hypersurfaces represent
the generalized Radon transform. (Note that the problem of

a9 J. Math. Phys. 26 (1), January 1985

0022-2488/85/010099-10$02.50

recovering a function from a knowledge of integrals over
geometrical objects such as hypersurfaces can be viewed as a
problem in the field of integral geometry.)

To solve the linearized inverse scattering problem we
invert the GRT. The inversion of the GRT is of mathemat-
ical interest by itself.'’~'® In Refs. 14-16 a general explicit
technique was developed for inverting the GRT. As we show
here, this technique leads to an asymptotic solution of the
linearized inverse problem of wave propagation.

Miller’ recognized that seismic imaging for the general
case of variable background and irregular source-receiver
geometry could be cast as the problem of inverting a GRT.
He derived an approximate imaging algorithm, using
weighted and filtered backprojection of the data, and applied
it to both synthetic and real examples. The weighting sug-
gested in Ref. 7 differs from what we obtain by an obliquity
factor.

In this paper we give an exact, formal answer to what is
the proper weighting and filtering of the data, and, most
important, to what is the nature of the reconstructed image.

The inversion of the GRT requires the introduction of
Fourier integral operators (FIO). A special role is played by a
FIO of the form F = R *KR (see Refs. 14-16). Here, R de-
notes the GRT, R * is an operator dual to R, and X is a one-
dimensional convolution operator; R * is also known as the
generalized backprojection operator (GBO). The Fourier in-
tegral operator F was studied in Refs. 14 and 16, and it was
shown that by properly choosing the convolution operator K
and the weight function of the GBO the problem of inverting
the GRT can be reduced to that of solving a Fredholm inte-
gral equation.

By modifying slightly the arguments used in Refs. 14~
16 and exploiting the fact that F is “almost” the identity
operator we rigorously establish a class of migration algo-
rithms as approximate solutions of the linearized inverse
scattering problem. The approximation amounts to using
only the first term of an asymptotic expansion for the “in-
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verse” GRT. Due to the nature of the asymptotics we are
able to give a precise meaning to what is reconstructed by
this first-order inversion for arbitrary configurations of
sources and receivers, including the case of limited view an-
gles. In particular, we show that the (locations of) discontin-
uities of the unknown function describing the medium are
recovered, rather than the function itself.

We derive an algorithm for recovering these discontin-
uities for variable background velocity and an arbitrary con-
figuration of sources and receivers. Our derivation is valid as
long as certain physically meaningful conditions on the glo-
bal structure of rays are satisfied.

Until now, mathematically rigorous justifications relat-
ing migration to inverse scattering have been given only for
migration schemes with constant background velocities and
special source-receiver geometries. Previous workers, nota-
bly Norton and Linser'” and Rose,'® have made the connec-
tion between the Radon transform and the linearized inverse
scattering problem. Norton and Linser'” derived explicit in-
version formulas for a constant background velocity and
coincident sources and receivers for plane, spherical, and
cylindrical apertures. They obtained certain backprojection
algorithms as approximations to the exact inversion formu-
las. These backprojections are migration schemes in the
sense of our definition. Specializing our results to their case
we obtain the backprojection algorithm of Ref. 17 for a plane
aperture. However, in the case of a spherical aperture our
answer is different from that of Ref. 17. Our approximation
remains valid even if the point of reconstruction is not close
to the center of the spherical aperture. As an additional ex-
ample, we obtain a migration algorithm for sources and re-
ceivers located on a plane and separated by a fixed distance.

Il. LINEARIZATION OF THE INVERSE PROBLEM

To linearize the inverse scattering problem we use a
standard procedure which is essentially a small perturbation
technique. Formally, this procedure can be stated as follows.
Consider an equation of the form

Lv=g, (2.1)
where the operator L,

L=L,+L,,
is a perturbation of a known operator L, by an operator L,.
Assuming that we can—exactly or approximately—invert
the operator L, we look for a solution of the equation (2.1} in
the form

v=0" 4 0%,
where
i -1
vm = L ° g,

and L ;' denotes the inverse operator. Substituting this into
(2.1) and applying L ;' to both sides of the equation we
obtain

v= —Ly'Lp™—Ly 'Ly~
By making the (single scattering) approximation

v~ — L Lo (2.2)
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we linearize the relation between the function v* and the
perturbation L,.

Let us now apply this procedure to the Helmholtz equa-
tion which describes wave propagation in a fluid of constant
density. Without complicating the necessary arguments we
treat this equation in n space dimensions since the dimension
enters only as a parameter.

First, we consider the case where the perturbation is
about a constant background velocity, which we take to be 1.
Assuming then that the index of refraction n(x) of the medi-
um in some region X can be written as

n?(x) =1+ flx),
the goal is to characterize the function f{x) from observations
of the scattered field on the boundary X of the region X, as
generated by a known incident field. Let us assume that the
incident field is due to a point source located at a point 7 on
the boundary dX. The operator L, is the Helmholtz operator
for a constant-velocity medium, i.e.,

L,=VZ +k?
where V2 is the Laplacian operator in spatial variables and
the perturbation is

L, =k¥(x).
The incident field is given by the Green’s function
- (__k___)(" ) ZVZH frlx)— a2k |x —. 7l),
4 \27|x — 7|
where H{)_, , is the Hankel function of the first kind. We

use the first term of the asymptotic expansion of the Hankel
function to approximate v™ by

(2.3)

Voeg) = —

k (n—3)/2
22mlx — 5|7

— {7/2)n+ 1)/2 ik |x ~ 7|
N 1

Ui"(xﬂ?)ze
(2.4)

which is exact for n = 3. Since the operator L 5 ' is defined
in terms of the Green’s function, we obtain from (2.2) the
(first term of the asymptotic expansion of) integral represen-
tation of the singly scattered field v* as

w (_ik)n—l eik!x—-gieik]x—nl
v¥(k.6,m) = Slx)dx
arr=" Jx (e = £ [x — gl
(2.5)
For n = 3, (2.5) yields v* as
k2 ek Ix—§1 oik|x—mn|

b = = fo | S T

Let us now consider the case of variable background.
Assuming that the index of refraction of the medium in some
region X is of the form n?(x) = n3(x) + f(x), where ny(x) is
known, the problem, again, is to characterize the function
[f(x) from observation of the scattered field on the boundary
dX. Now L, is the operator

L,=V?+kM.
The perturbation L, is of the form (2.3)

Again, we choose the incident field to be due to a point
source, so that

(V3 + & 2nd w"(x,m) = 8(x — ), (2.6)
where 7 indicates the position of the source. As an approxi-
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mate solution of (2.6) we use, in place of (2.4}, the first term of
the geometrical optics approximation

vin(x,,r,) ~e~ im/2)n + 1)/2k n— 3)/2A in(x’,”)eik‘ﬁ i“(x,n). (27)

Here, ¢ i“(x,n) is the phase function and satisfies the eikonal
equation

(Vg ™) = njx). (2.8)

Function 4 (x,7) is the amplitude and satisfies the transport
equation along the ray connecting the source at 7 on the
boundary dX and the point x inside the region X,

APVIgn 42V 4™V ¢ =0, 2.9)
We note that the factor ¢ ~ 4772 + /2 (2 =312 i (2 7) is ob-
tained by matching the geometrical optics approximation
(2.7) with the exact solution in the neighborhood of the
source for large k.

If we interchange source and receiver positions then
(2.7) also yields the approximation v**(x,£ ) for the Green’s
function (which defines the kernel of the operator L ; !).
Thus, we arrive at

Uout(x,g ) ~e~ i(m/2)(n + 1)/2k {n — 3)/2A out(x,g )eik¢ oMt(x £ i’
(2.10)

where ¢ °™(x,£ ) satisfies the eikonal equation in (2.8) and
A °(x,£ ) satisfies the transport equation along the ray con-
necting the point x and the receiver at the point £ on the
boundary dX,

A outvi¢ out + ZVXA out,vx¢ out __ 0 (2 1 1)

In general, one can solve the eikonal equation (2.8) by
ray tracing. The transport equations in (2.9) and {2.11) then
reduce to ordinary differential equations along rays.® If the
background index of refraction ny(x) is discontinuous then
the rays satisfy Snell’s law on surfaces of discontinuities and
appropriate transmission coefficients have to be used in
computing the amplitudes on these surfaces. We formulate
the assumptions we need to make about the global structure
of rays—and, therefore, about the background index of re-
fraction—in the next section.

Combining (2.2), (2.3), (2.7), and (2.10) we find the (first
term of the asymtotic expansion of) integral representation
of the singly scattered field

Plekin) = (~ ik [ e nrghs e
X

XA (x84 ™(x,1) £ (x)dx, (2.12)

as a function of the receiver position £, the source position 7,
and wave number k. The integral representation (2.12) is an
integral equation for the unknown function f.

Analogous integral equations can be derived for fluids
with variable density and for elastic solids. We shall present
the derivation elsewhere. In these cases integral equations of
the type in (2.12) relate the singly scattered field to a combi-
nation of parameters characterizing the medium. For elastic
media we obtain a system of four integral equations corre-
sponding to p—p, p-s, s—p, and s—s scattered fields, and the
phase functions ¢ ** and ¢ °** satisfy different eikonal equa-
tions corresponding to the indices of refraction of p and s
waves. The amplitudes 4 (x,7) and 4 °*(x,£ ) satisfy the cor-
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responding transport equations along the rays connecting
points x,77 and x,&, respectively. In the following sections we
consider the integral equation (2.12) in a form which covers
these cases.

jll. THE INTEGRAL EQUATION OF THE LINEARIZED
INVERSE PROBLEM AND THE CAUSAL GRT

It was shown in the previous section that the lineariza-
tion of the inverse scattering problem leads to the integral
equation

o) = (— ik J*™ 'Lf(x)a(x,f,me”‘” w0y, (3.1)

where X is the domain of definition of the unknown function
f(x), &£ and 7 are points on the boundary dX corresponding to
receiver and source locations, and k is the wave number. The
phase function ¢ (x,£,7) is the sum of two phase functions

¢ (x.6m) =9 (&) + & (1), (3.2)
which satisfy the eikonal equations

(Ve (.6 = #3(x), (3.3a)
and

(V& (x:7)) = n*(x). (3.3b)

In (3.3a) and (3.3b), # and # are indices of refraction, i.e.,
positive bounded functions. We have replaced ¢ °* and ¢
by & and ¢. The function a(x,£,7) in (3.1) replaces the product
of the amplitudes 4 °* and A ™

alx,5,m) = A4 °%(x,5 )4 "(x,7). (3.4)

Both 4 °* and 4 ™ are positive since they are solutions
of the transport equations in (2.9) and (2.11). This is true even
for discontinuous indices of refraction 7 and 7 as long as the
global structure of rays satisfies the assumptions formulated
later in this section. Therefore, a(x,£,77) is positive on
X X 39X X3X and can be called a weight function. We as-
sume, in addition, that a(x,£,7) is infinitely differentiable,
namely, a(x,&,57)eC °°(I’ X dX XadX), where X is any com-
pact set contained in X.

The integral equation (3.1) is related to a causal GRT.
To see this, consider the transform R defined by

(RAWGED) = jf(x)a(x,g,n)a (t— (eEmdx, for 130,

{Rf )€ =0, for t<0. (3.5)
We call the transform R in (3.5) the causal GRT for obvious
reasons and note that the transform R agrees with the GRT
as defined in Refs. 14-16 for 1>0. However, the integral in
{3.5) is not defined for <0, and it is natural to set
(Rf)(t,£,m) = O for £<O0. Since in this article we consider only
the causal GRT, we drop the wgrd causal.

The Fourier transform (Rf) (k,£,7) of (Rf)(t,§,7)in(3.5)
with respect to ¢ yields the integral in (3.1) up to the factor
(—ik)"~", since the function v(k.§,5)/( —ik)"~' can be
shown to satisfy the dispersion relation if ¢ and ¢ are posi-
tive. Thus,

v(k.&m) = (— ik '~ (Rf) (k.&vm). (3.6)
We consider the problem of finding the function f(x} in
(3.1) in the following two situations: (i) the position of the
source is fixed, i.e., we are given v{k,&,n) for fixed 7 and for a
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set of values £edX; and (ii) the position of the receiver is a
function of the position of the source, i.e., we are given
v(k,5 (17),m), where & (7) is a known function of 5, for a set of
values 7edX.

We specialize the arguments of Refs. 14 and 16 to the
case of the integral equation in (3.1). Having established the
relation of the integral equation in (3.1) to the GRT it be-
comes natural to introduce the same generalized backprojec-
tion operator and Fourier integral operator used in Refs. 14—
16 to study the integral equation in (3.1). This we do in Sec.
IV of this article.

We make the following assumptions about the domain
X, its boundary dX, and indices of refraction in (3.3a) and
(3.3b).

Let n(x) be the index of refraction in the region X and let
S~ ! be the unit sphere with the center at the origin of the
tangent space at the interior point xeX. Here, S%~ ! repre-
sents all directions at the point xX. Let {¢(x,£ }} be a family
of geodesics (rays) of the metric n(x)dx connecting the point x
with points £edX %, where dX °C dX is an open region of the
boundary. Each ray within the family has a direction
©eS 2~ ! at the point x. Thus the family of rays maps direc-
tions at the point x (an open domain of the unit sphere 2~ ')
into dX °. In this article we always assume that this map is an
orientation-preserving diffeomorphism. Algebraically this
means that certain Jacobians do not vanish. Physically it
means that if a source located at an interior point of X illumi-
nates a region dX ° on the boundary, then this region can be
smoothly contracted along the rays into a part of a small
sphere around the source. We note that this assumption
leads to the uniqueness and stability estimate in the inverse
travel time problem.2° When the index of refraction is con-
stant this condition is satisfied for domains which are star
shaped with respect to points of reconstruction. These in-
clude all practical configurations in geophysics, tomo-
graphy, and nondestructive testing.

Our next remark deals with the domains of definition of
the operators that appear in this article. We always define
operators on functions which belong to the class C (X ) or
C ~(X ). However, we can extend the domain of definition to
the appropriate dual class of generalized functions by the
standard procedure (see Appendix B). Thereby, we consider
such an extension automatically performed each time we
define an operator in this paper.

IV. ASYMPTOTIC SOLUTION OF THE LINEARIZED
INVERSE PROBLEM WITH A FIXED INCIDENT FIELD

In this section we construct an asymptotic solution of
the integral equation in (3.1) given the function v(k.£,7),
where 7—the position of the source—is fixed. For the sake
of brevity the dependence on n will sometimes be sup-
pressed. Thus, we write the integral equation in (3.1) as

vik,§ ) = (Wf)k.E),
where
(WA)kE)=(—ik)"~ ‘J;f (x)a(x.£ Je™* =57dx.  (4.2)

In (4.1) and (4.2), v(k,£) and a{x,£) stand for v(k,£,7) and
a{x,£,77) in (3.1). The phase function ¢ (x,£,7) is described in
(3.2).

(4.1)
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We now introduce the generalized backprojection oper-
ator R * dual to the generalized Radon transform R. For
infinitely differentiable functions u(t,£ )eC (R, XJX) we

define R * as
(R *u)(y) = f u(t,€) b (1€ ME.
X t=d¢{nén)

The weight function b ( y,£ ) is a smooth, non-negative func-
tionon X X 3dX, b (y,£ )eC ~(X X dX ), which we have chosen
to be

(4.3)

b(yg)=1hr(y&)/a(y:E)) x(¥:5) (4.4)
where 4 ( y,£ ) is the determinant
$,, 9, ¢yn
h (y, §) - ‘?y.é’l ‘?yzg. . ‘:ﬁyné‘. , ( 4.5)
$.VI§n -1 $)'2§n -1 $yn§n -1

and y ( »,£ )is acutoff function. The cutoff function y { y,£ )is
described below and is chosen to ensure that y (y,£ )4 (.§)
>00n X XJX. The phase functions ¢, ¢, and ¢ are related by
(3.2). The functions ¢ and ¢ are solutions of the eikonal equa-
tions (3.3a) and (3.3b). Our particular choice (4.4) of the
weight function b ( y,£ ) in (4.3) makes it possible to regularize
the problem of inverting the GRT as was shown in Refs. 14

and 16.
We now change the variable of integration in {4.3). For

each point y in the interior of X let @ denote a point on the
unit sphere S~ . This means that o is a direction at the
point y. For the ray with direction o at the interior point yeX
let £ (@) be the point of intersection of that ray with the
boundary dX. According to the assumptions formulated in
the previous section, the function £ = £ () is invertible and
has continuous partial derivatives of the first order. We
choose weS; ! to be the new variable of integration in (4.3).
From Lemma A in Appendix A it follows that

h(p,€)dE = A1 + (fi/R)cos Y)dw, (4.6)
where . ;
cos Y ».£) = [V, (3.5 )V, ¢ ()] /A y)aly), (4.7

and dw is the standard solid angle differential form on the
unit sphere S,
Substituting (4.6) in (4.3) we rewrite R * as

R *u)( 1) = A7 , X(»8)
(R *u)(») (y)fs;_,u(ts“) e
X[l-}-Mcosrﬁ(y,g‘)]dw, (4.8)
a(y)

where £ = £ (w). In this form the operator R * can be comput-
ed explicitly by making use of ray tracing.

It remains to define the cutoff function y ( y,£ ). Given
the interior point yeX and the boundary point £edX we set
y (»€)=0, if 1+ [a(y)/A(y)]cos ¥(y,£)<0. Choosing an
arbitrarily small €>0 we set y(y,&)=1, if 1 +[A(y)/
A( y)lcos ¥( y,£ )€, and define y ( y,£ ) elsewhere so that it is
infinitely differentiable and 0<y ( y,£ )<1.

Let dX,,( y) be the region of the boundary defined by

90X, (y) = {£€dX: cos Y y.£ ) < — [A(¥)/A( )] + €]}.
Let 9X 5 ( y) be the complement of dX, ( y), i.e.,
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X2 (y)=3X\9X,(y)

To describe dX,, ( y) and, therefore, dX 5 ( y) for a given interi-
or point yeX, three cases can be distinguished.

(1) A y) > Ai( ). In this case dX, ( y) is empty since € can
be chosen sufficiently small.

(2) A( y) = #( y). In this case for sufficiently small ¢ the
region dX,, ( y) consists of an e-neighborhood of the unique
point &, where cos ¢{ y,.&o) = — 1.

(3) A(y) < A( y). In this case for any sufficiently small €
the region dX, ( y) is a connected part of the boundary 9X.
The cutoff function y(y,£)=1 on dX ‘,’,( y). If (1) holds the
cutoff function y ( »,£ }=1 on all of X. If (2) holds the cutoff
function isolates a single point £, and is introduced here for
technical reasons. In carrying out the integration in (4.8) one
can set the cutoff function y ( y,£ )=1 on the boundary dX. If
(3) holds the cutoff function y ( y,£ ) is zero on all but a small
open subset of dX, ( y) which is determined by the choice of €.
In carrying out the integration in (4.8) we can set € = 0 and
X (»€)=00ndX,(y)

If v(k,£ ) is available only on a part of the boundary dX
we have to modify the cutoff function. We include an e-
neighborhood of the region where the function v(k,£ ) is not
knowninthesetdX, (y). Theny (y,§ )isagain definedinsuch
a way that it is infinitely differentiable with values
0<y (»€)<1 with y(»€)=1 on dX°%(y) =X \dX,(y)
and y ( »,£) =0 on all but an arbitrary small subset within
dX,(y). We denote the modified cutoff function again by
x(»é)

Note, that if (3) holds—as in the case when the incoming
wave is s—p converted at the point yeX in an elastic medi-
um—the angle ¥, such that cos ¥, = — 7( y)/#( y) plays the
role of a “critical angle” between the directions of incoming
and outgoing waves at the point y.

We now consider the FIO defined by

- 1 < kP (x,9,€)
= o [T] [er=eroatune)
X flx)dx d€ k' dk, (4.9)
where
P (xy,6) = (x.6.m) — & (3:5:7)- (4.10)
The function ¢ (x,£,7) is described in (3.2), and
A(xys) = laxg)/a(yE)1h (3.8 ) (1.5), (4.11)

where a(x,£ ) is the weight function in (4.2). Let us also intro-
duce the operator & *:

n—1 ]
(F*o)t) = 2 J v(k Je =™ dk. (4.12)
27 Jo
We have
F=R*F*W. (4.13)

Toinvestigate the operator F we observe that the first term in
the Taylor series for @ (x,y,§ )is V¢ ( »,€,7)-(x — y) and con-
sider the operator

_ 1 ® 1KV, (v,EmHx — ¥)
g PN = 2L [ J;Xg(, Je
Xh(p,€)fix)dx dE k' dk. (4.14)

Changing variables of integration from k,£ to p, where
p=kV,6(».Em) (4.15)
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we find that
dp = k"~'h (.6 )d§ dk,
and, thereby,
1

— ipx — y)
o ax® Ny = e L,,( ) J;e )f(x)dx dp, 4.17)

where £2, ( p) is the image of R, X 3X ( y) under the change
of variables in (4.15). It follows from (4.17) that

[} = P d, ’
ey SN = [ el

where f{ p) is the Fourier transform of the function £, It is

(4.16)

(4.18)

clear thatif 3X | ( y) = dX then the operator I, is the iden-
tity operator. If dX ‘,’,( y) #0X, then the operator I ., in

(4.18) is an operator of partial reconstruction.

It is important to note that for each point yeX, the re-
gion dX 9 ( y) on the boundary dX can be explicitly construct-
ed by ray tracing. Having found dX ‘,’, {»), we can then deter-
mine explicitly the set (2, (y) in the Fourier domain, where
the Fourier transform £ p) of the function f, which we
would like to recover, is known. If only partial data are avail-
able this set £2, () in the Fourier domain determines the
spatial resolution of the partial reconstruction (4.18) and
controls what can be recovered in the migration schemes
presented below.

The asymptotic solution of the integral equation in (4.1)
is constructed by making use of the following theorem.

Theorem 1: The Fourier integral operator Fin (4.9)isa
pseudodifferential operator and can be represented as a sum

F= Iax‘,’, + Tl + T2 + o (4‘19)

where I, ., denotes the operator described in (4.17) and the
n

operators T, T,,... belong to increasingly smooth classes of
pseudodifferential operators.

The definition of classes of pseudodifferential operators
can be found in Appendix B. For further references see Ref.
21, or any other reference where Fourier integral operators
and pseudodifferential operators are studied.

It follows from (4.13) and Theorem 1 that by making
use only of the first term in (4.19),

R*F*Wxl,y, (4.20)

we obtain an approximate reconstruction algorithm. The ex-
pansion in (4.19) also explains the precise meaning of the
approximation in (4.20). Since we neglect all terms in the
expansion which appear to be smoothing operators, the ap-
proximation in (4.20) reconstructs only (the location of) the
discontinuities of the function f (or the places, where the
gradient of fis large). In this sense the formula in (4.20) pro-
vides an algorithm for imaging the discontinuities. This is, of
course, what is sought in geophysics and many other appli-
cations where the discontinuities of parameters describing
the medium are of interest. In Sec. VI we describe the algo-
rithm contained in (4.20) in greater detail.

The remainder of this section contains an outline of the
proof of Theorem 1. The material presented in Secs. V and
VI is independent of the details of the proof.

The proof follows along the same lines as the arguments
presented in Refs. 14 and 16. Consider the set
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Co = {(k&xy)eRL XX Y Y)XX XX : P (x,p,£) =0,

V@ (x.,£) =0}, (4.21)
This set is of fundamental importance in the theory of Four-
ier integral operators since its structure determines the prop-
erties of the operator. The definition (4.21) is not standard
(see Ref. 21, for example), however the change of variables
(4.15) transforms it into the classical one.

Using the assumption that the function £ = £ (@) is a
diffeomorphism it can be shown that

Co = {(kéxx):keR,, £e0X(y), xeX }, (4.22)
so that the projection of C,, on X X X is the diagonal. This
implies that the operator in (4.9) is a pseudodifferential oper-
ator as defined in Appendix B.

Let us consider y,(x,y)eC =X XX), O<y;s{x.p)<1,
such that

Xa(x,y)-_- 1, if ’x—y|<5/2,

Xs (xy) =
where & > 0 is an arbitrary small parameter. Instead of the
FIO (4.9) we can study the following operator (we keep the

same notation):
oo

(Ef Ny =
X xs(xp) f(x)dx d& k™~ ' dk. (4.23)

This operator differs from the operator in (4.9) by a regular-
izing operator (see Appendix B). The regularizing operator
does not change the asymptotics and can be neglected since it
is “infinitely smooth.”

If § is sufficiently small and |x — y| < & we can write the
phase function @ (x,y,& } as

0, if |x —y|>4,

D (xp,£) =V, (pEm)x —y) + H (x5 ), (4.24)
where H (x,y,£ ) = O (]x — y|?), and the amplitude
AEyE)=h(PEX(PE)+ A (xp.L), (4.25)

whereA (x,y,£ ) = O (|x — y|). Making the change of variables
(4.15) and using (4.16), (4.23) becomes

= 1 ip{x — y) + iH (x,y.p)
= o I . [e

X (1 + 4 (x,y,p)) f(x)dx dp, (4.26)
where  H(xyp)=k(p)H(xy.£(p) and A(xyp)

= A (x3,£ ( p)). The functions k ( p) and &  p) can be deter-
mined from the change of variables in (4.15). Note, that as
functions of p, H (x,y,p) and 4 (x,y,p) are homogeneous of
degree 1 and O, respectively. Consider now the operator

— 1 ip-(x — y} + isH (x,p,p)
ES = L . L o ’
X(1 + 54 (x,p,p)) f(x)dx dp. (4.27)

Since F = F, we can use the Taylor expansion of F, f as a
function of s to express F as

L R B e G
F= — = F, ds.
mgo m! y §= + ! dS s @5
(4.28)
It was shown'#6 that the expansion in (4.28) of the operator
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F of the form in {4.27) consists of increasingly smooth pseu-
dodifferential operators. Comparing the first term in the ex-
pansion (4.28) with (4.17) we obtain the expansion in (4.19).
One can compute and use more terms in the expansion (4.19).
For example, the operator 7', was computed in Refs. 14-16.

V. ASYMPTOTIC SOLUTION OF THE LINEARIZED
INVERSE PROBLEM WHEN THE RECEIVER POSITIONS
DEPEND ON THE SOURCE POSITIONS

In this section we construct an asymptotic solution of
the integral equation in (3.1) given the function v(k,&,7),
where the receiver positions & = £ {5) depend on the source
positions 7. The arguments in this case are analogous to
those for the fixed source position, and are presented briefly
for this reason. Again, consider the integral equationin (3.1),
which we now write as

vik,m) = (Wf)(k.§ (m).m),
where

(W)K& (m)m) = (— ik )"~ J; S(x)a(x.§ (n),7)

X @F o8 ) e
The phase function ¢ is described in (3.2).
For functions u(t,7)eC (R X dX ) we define the dual
transform R * as
b (y.m)dn,

®*u)y) = | ute)
ax 1= ¢{pinm .
where the weight function b ( y,7) is a stnooth, non-negative

function on X X3dX, b (y,n)eC *{X X3X) and is chosen to
be

(5.1)

(5.2)

(5.3)

b(ym) = A (y.m)/aly.& (mhmly () (5.4)
Here, 4 ( y,n) is the determinant
¢y, ¢y2 ¢yn
h(ym)= ?””‘ ‘f””‘ ?y"”‘ , (5.5
¢yl7’n— 1 ¢Yz"ln -1 ¢yn"ln_ 1

and y ( y,7) is a cutoff function described below. Note, that
the function 4 ( y,n) differs from the one in (4.5} in the pre-
vious section. To compute the determinant (5.5) we again use
Lemma A in Appendix A. In the two-dimensional case we
find that

h(ymdn = (ﬁ2 L + A%+ ﬁit(l + —dé) cos ¢)dw,
dn dn

(5.6)

where .

cos Y p,m) = [V, 8 (3.5 M)V, & (y:m)]/A(p)A( ), (5.7)
and dw is the standard angle measure on the unit circle.

For simplicity let us assume that the function £ (7) is
such that the function 4 ( y,7) in (5.5) is strictly positive for all
yeX and pedX. In this case the infinitely differentiable cutoff
function—y ( y,n)—is introduced only to isolate a region of
the boundary dX ( y), where we do not know the function
v(k, 7). The cutoff function y ( y,57) = O for points 7 in X ( y);
it has values O<y (,£)<1 in an e-neighborhood of 3X ( ),
where € is arbitrarily small, and it is set equal to 1 elsewhere.
Let dX % y) denote the complement of 3X ( ), i.e.,

X% y) =X \c?X(y)

G. Beylkin 104

Downloaded 16 Sep 2002 to 128.138.249.185. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/impcr.jsp



Again, consider the Fourier integral operator F

= o [ fere

X4 (x.p,n) f(x)dx dn k=" dk,
where @ is defined in terms of the function ¢ in (3.2) as

(5.8)

D (xy,m) = ¢ (x.5 (7)) — & (1.6 (0)7), (5.9)
and
Ay = LELO) 4y, (5.10)
a(y£ (n)m)
Using the operator % * defined in (4.12), we have
F=R*F*W. (5.11)

The analysis of the operator F is conducted analogously to
the one in the previous section. In this case the change of the
variables of integration in (5.8) from k,7 to p is as follows:

p=kV,¢ (3£ (nhn), (5.12)

and

dp = k" 'h(y,n)dn dk. (5.13)
The asymptotic solution of the integral equation in (5.1) is
constructed by making use of the following theorem.

Theorem 2: The Fourier integral operator in (5.8) is a
pseudodifferential operator and can be represented as a sum

F=Iye+T\+T,+ -, (5.14)
where ;. denotes the operator
1 — gy
Taxof YY) = — e™"f(p)ap, (5.15)
(2m" Jay

where (2 ( y) is the image of R . X dX °( y) under the change of
variables in (5.12). The operators T, T>,... belong to increas-
ingly smooth class of pseudodifferential operators (see Ap-
pendix B).

The first term of the expansion in (5.14) yields the ap-
proximate reconstruction algorithm

R*F Y Wxlyo, (5.16)
where the generalized backprojection operator R * is given
by (5.3).

In the following section we show that for constant back-
ground and coincident sources and receivers the approxima-
tion (5.16) reduces to algorithms described in the literature.

VL. THE ASYMPTOTIC SOLUTIONS AND MIGRATION
SCHEMES

This section contains a brief description of migration
schemes which follow from our results. As we shall see, the
measured scattered data are such that the migration schemes
amount to the generalized backprojections {except when the
Hilbert transform has to be applied first in spaces of even
dimensions).

Let us recall that the goal is to estimate the unknown
function f(x)in (2.12) or (3.1) from observations of the (singly)
scattered field. We assume that the scattered field u = 4* is
given in the time domain, so that

b= o= [ olkmle % dk, (6.1)
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where v(k,&,7) is described in (3.1). In many cases of practical
interest the actual measurements are measurements of the
total field, and the incident field must, by some means, be
removed. However, in this paper we assume that the {singly)
scattered field is given in the time domain to start with.
Comparing the definition of the operator % * in (4.12)
with the Fourier transform in (6.1) and denoting the real part
of the operator (4.12) as w{t,£,7)=Re( & *v)(t,£,17) we obtain

wit,&m) = [(— 1)~ 22027P " Ju(t.£n), (6.2)

~ in spaces of odd dimensions n =2m + 1, m = 1,2,..,, and

(=1~ IJ”’E(’_"Ei)dt', (6.3)

it ) 0Pt wlow t—t
in spaces of even dimensions n = 2m, m = 1,2,... . Thus, one
has to apply the Hilbert transform (6.3) to the scattered field
in spaces of even dimensions to obtain Re( ¥ *v)(t,£,7).

It follows from (6.2) and (6.3) that the only remaining
step in algorithms (4.20) and (5.16) is to construct the gener-
alized backprojection operator (GBO) in (4.3) or (5.3), de-
pending on the source-receiver configuration. Let us consid-
er the case when the receiver position £ depends on the
source position 7. The construction of the GBO for fixed
source position in (4.3) is completely analogous.

To.compute the GBO (5.3) we have to compute both the
phase function and the weight function. Such a computation
is equivalent to the construction of two Green’s functions in
ray approximation. Indeed, the computation of the func-
tions ¢ = ¢ and ¢ °" = ¢ in (3.2) and the factors 4 ™ and
A°" in (3.4)—which are necessary to construct the weight
function in (5.3) [or (4.3)]—amounts to the computation of
the ray approximation of two Green’s functions along the
two rays connecting the point of interest in the medium with
the source and with the receiver. The additional obliquity
factor in the weight function can be easily computed as it
follows from (5.6) and (5.7) [or (4.6) and (4.7)]. This factor
depends on the angle between the rays connecting the point
of interest in the medium with the source and receiver.

Once both the phase function and the weight function
are computed the GBO is applied in the time domain, either
to the singly scattered field itself [in spaces of odd dimen-
sions (6.2)] or to the Hilbert transform of the singly scattered
field [in spaces of even dimensions {6.3)], as required by the
approximate formulas in (4.20) or (5.16). In this way we ob-
tain the reconstruction f;, of the function f from (6.2), (6.3)
and (5.16) as

fmls :Re Iaxo f: (6.4)

If 3X°=JX then the operator I;y. is the identity
operator. The function fin (2.12) [or (3.1)] is assumed to be
real, and, therefore, it follows from (6.4) that £, {x) =~f(x) in
the region X. The symbol = expresses the fact that we image
the (location of ) discontinuities of the function f(x) in the re-
gion X, since smooth terms in the asymptotic expansion in
(5.14) are neglected in the approximation.

In most practical situations we have data only for limit-
ed view angles, and, therefore, X °# dX. Thus, we obtain a
partial reconstruction since we can recover the Fourier
transform /" [see (5.15)] only on a part of the Fourier space.

The assumption that fis real implies that f(p) =/ — p),
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where the bar denotes the complex conjugate. In particular,
this relation shows that the Fourier space is covered twice if
dX ° = 3X. Given the source-receiver configuration of a par-
ticular experiment, we can determine the domain in the
Fourier space where the function £ is known. This domain
controls the spatial resolution of the reconstruction. In ex-
amples where the domain X is a half-space (given later in this
section) we only have partial coverage since observation
points are restricted to the boundary of the half-space. How-
ever, assuming infinite aperture we still obtain the function
S~ over the whole Fourier space by continuing /" with the
help of the identity £ p) =/ — p).

We shall discuss the implications of our results in explo-
ration geophysics and the comparison with existing migra-
tion schemes in greater detail elsewhere. Here we note only,
that, in general, the construction of a GBO requires ray trac-
ing and computation of solutions of the transport equation.
However, in the case of constant background one can obtain
analytical expressions for the GBO. Let us illustrate this
with a few examples where an explicit construction of the
GBO is available, and show that at least for these examples
some of the migration schemes appearing in the literature
are given by a generalized backprojection operator. We con-
sider the case with a constant index of refraction and set

A=n=1,
without loss of generality.

Example 1: Let the domain X be the half-space x,, >0 of
the n-dimensional space (x,,x,,..., X, _;, X,) and suppose
measurements are performed everywhere on the boundary
0X = {(x,X55.s X,_,, 0)} of the half-space X. Let
E=1="uNy Mu_1, 0), so that we have coincident
sources and receivers. The phase functions ¢ and ¢ are

p=¢=|x—1nl
so that ¢ in (3.2) is

¢ (x) =2|x — /. (6.5)
To compute the determinant 4 in (5.5) we make use of the
identities

By = — (4/8)8; — 6.8, /8,

¢xn1]j = - ¢xn¢11j/¢’

where §; is the Kronecker symbol and i,j = 1,2,...n — 1,
and obtain

hixmy)=4"""¢, /6", (6.6)
where

b, (x,m) = 4x, /¢ (x,7). (6.7)
It follows from (2.4), (3.1), and (3.4) that

alx,n,n) = 1/4x¢ )", (6.8)

where ¢ is given by (6.5). Using (6.6)—(6.8) the weight func-
tion b in (5.4) can be written as

b (x,m) = C,(x,/|x — 7)),
where

C —_ 22n+ l,ﬂ,n—— l'
We set

Xo/|x — | =1,
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where 7 and ], are unit vectors pointing in the direction of x,,
axis and in the direction of the line connecting points x and
7. The generalized backprojection operator R * thus is

(R *w)(x) = C, wa(le — 9|, dy, (6.9)

where w is given in (6.2) or (6.3) depending on the dimension
n. Here we integrate over all source-receiver positions on the
boundary dX. The GBO in (6.9) can be considered as a mi-
gration scheme within our definition. This operator was ob-
tained in Ref. 17 for the case n = 3 by a different approach.

Some of the migration schemes that have appeared in
the literature also have a form of the GBO. Reference 3 is an
example. However, the particular weight functions used are
generally different from the one presented here.

Example 2: This example deals with the case where the
source and receiver positions are confined to a sphere—the
surface of the n-dimensional ball of the radius p. We can
write £ = 77 = pv, where v is a unit vector indicating the
position of the coincident source and receiver on the sphere.
Thus, we have

p=¢=I|x—pvl,
and

& (x,v)=2|x — pv|. (6.10)
The computation of the determinant in (5.5) yields

hixyv)=p"~'2(p — xv)/P".

Since the weight function a{x,£ (),7) in (5.2) can be written
for this example as

alx,vy) = 1/4(mp )",
we obtain the weight function
bley)=C,[p"~Y(p — x)/x —p]],
and the GBO

R*wl) =,

fv] =1

n—1 ¥,
x 2 (p—xv) dv,
Ix —pv|

w(2 Ix - PVI,V)

(6.11)

where w is given in (6.2) or (6.3) depending on the dimension
n. The integration in (6.11) is over the unit sphere and dv is
the standard solid angle differential form. The GBOin (6.11)
differs from the one constructed in Ref. 17 for the casen = 3.
The approximation in (6.11) remains valid even if the point x
is not close to the center of the ball.

Example 3: Finally, we consider the case where source
and receiver positions are confined to the boundary of a half-
space as in our first example. However, we assume now that
sources and receivers are separated by a fixed distance 2d.

Let 7 denote the coordinate of the midpoint between
the source and receiver, so that we can write

p=|x—y—d|,
¢=’x*‘77+d|’

(6.12)
(6.13)
and

gl =|x—n—d|+[x—n+d|
We consider the case of the dimension n = 2. Making use of
the identities
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b, = xl—zy—d " x1—~11+d,

1¢ 1 ’
¢x,=x2(_3_+"g"
o RATEE:

we can, in this case, compute the determinant in (5.5) directly
and obtain

b=, +3.1(F + )

13 ,
+ Bodr, — ¢x,¢,,>(¢£ _ %_)

Substituting appropriate expressions for the derivatives of
the phase functions we write 4 as

ho) = 2¢2 26 +ap
-5 22?5t — 2x = nPd) |
Hence,
blen= 2723+ 37
@)"

2d 2
— —m(d2+x2 —2(x—77) d)],
¢4 i
whereé\S and ¢ are given in (6.12) and (6.13). The GBO in this

case is

®*w) = [ wizlx — gl e,

where w is given in (6.3) for n = 2. It is easy to see that if
d = 0 then we obtain the GBO in (6.9).

(6.14)
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APPENDIX A

The following lemma holds in the cases of Riemannian
and Finsler spaces. It was used in Ref. 20 to prove a unique-
ness theorem of the inverse travel time problem in the case of
the Riemannian metric. We present here an elementary
proof for the Euclidean space.

Lemma A: Let the function ¢ satisfy the eikonal equa-
tion

(V.8 (x.6 )2 = n(x), (A1)
in the domain X with the boundary X, where the parameter
£edX. We assume that the boundary JdX is diffeomorphic
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(with the preservation of orientation) to the unit sphere §2 ~*
centered at the origin of the tangent space at the point xeX.
(This unit sphere represents all directions at the point x.)

Let ¢ (x) have first partial derivatives and consider the
determinant

ax, &x, e axn

&xl 1 &x; f e axngl
J(x’é') = :g :f . . 2 (A2)
&xlgn -1 &ng’n -1 axngn -1

where &,,....5,_; is a local system of coordinates on the
boundary. Then

T, - - dE,_, ="V, 4V, ¢ )do, (A3)
where do is the standard measure on the sphere %', and
& =£ (w), where weS ;™"

Proof: Since ¢ satisfies the eikonal equation in (A1) we
can write

z}xl =ncos Y,

&,‘2 = nsin y, cos >
: (A4)

&xn_‘ = n sin y, sin y,--C0S ¥, _,

:}sxn =n sin ¥, sin y,-sin y,_;,
where y; = x;(x,§15-s€n_ 1) J = 1,...,n — 1, are angular co-

ordinates on the unit sphere $2~'. By substituting (A4) in
the functional Jacobian in (A2) we obtain (A3). Let us carry

out the calculation for the case n = 3. We have
¢x,§, = —nsiny, 4L aX‘
o,
&ng. = 1 CO8 }, €OS ¥, 2 % _ n sin y, sin y, =2 6,1/2 (AS)
’ 9; 3%,

y S ; o 20 2
P, =N COS Y, sin y, 2 3, + n sin y, cos y, =2 85,
wherej = 1,2,

Let us compute cofactors of the first row of the func-
tional determinant. Using (A5) we compute the cofactor for
the element &xl . We obtain

¢"1§ 1 ¢"3§ 1
¢7‘25’2 ¢x3§z

— 2|20 31’2sz1 cos ¥,

9, 95,
_ o
9€, 95,
a(l’vl’z)
162)

Analogous calculations can be performed for all cofactors,
so that we obtain (A3), where

do = sin y, dy, dy-.

APPENDIX B
We briefly present here some first definitions and prop-
erties of pseudodifferential operators. Consider the operator

alx.D),
(6D )1)ox) = [ atoxp) (P

sin y, cosxl]

¢x, SmXI
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where f"(p) denotes the Fourier transform of the function /.
The function a(x,p) is the symbol of the pseudodifferential
operator a(x,D ).

Definition: Let {2 be an open subset of R" and m be a
real number. Let S ™(2 ) be the class of symbols and consist
of infinitely differentiable functions a(x,p),
a(x,p)eC =(£2 X R "), such that to every compact QC £ and
to every two multi-indices a, B there is a constant Cy,(a,8),
such that

|95 Falx,p)|<ColaB )1 + |p|)™ 1.
The pseudodifferential operator a(x,D ) is said to belong to
the class L ™(f2) if its symbol a(x,p) belongs to S ™((2 ).
The following properties describe a(x,D ) as an operator.
If a(x,p)eS ({2 ) then a(x,D ) is a continuous operator

a(x,D ):C 5 (2 )}~>C =(12),

where C $(£2) denotes the class of infinitely differentiable

functions with compact support in 2. The operator a(x,D)
can be extended to a continuous map

a(x,D).&'(2)}>2'(12),
where 2'(£2} is the space of distributions on X [the dual of
C5(2)] and &'(12) is the space of distributions with com-
pact support [the dual of C *(£2)].

Definition: An operator is called to be regularizing if it
maps

E'(2)>C~12).

(This means that a regularizing operator transforms func-
tions with singularities into infinitely smooth functions.)

Let L — = (£2 ) be the intersection of all L ™{x), where m is
real. One can prove that every operator from the class
L~ = (£2)is regularizing and every regularizing operator can
be represented as an operator from the class L~ = (2).

The asymptotics in (4.19) and (5.14) have the following
meaning in terms of classes of pseudodifferential operators:
we can prove'*'¢ that

TyeL ~/22),
forj=1,2,..., and

(F—IM?7 —TI,—T,— - —T)eL ~'~Y2).
for / =0,1,2,... . In particular,

F— Iax?’OGL ~12).
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This means that approximations in (4.20) and (5.16) al-
low reconstruction of discontinuities, since the discrepancy
operator is a smoothing operator. It can be shown that an
operator from the class L ~'(¢2 ) increases by 1 the number of
derivatives of a function to which it is applied. In precise
terms the following theorem holds.

Theorem: Let a(x,D ) be a pseudodifferential operator in
£2 of the class L ™({2 ). Given any real number s the operator
a(x,D ) can be extended as a continuous map

a(x,D ):-H 3o (2 }>H ic "(42),
where H: . (2) and H;_ ™({2) are the so-called Sobolev

comp

spaces of distributions.

The index s can be interpreted as a ‘“number of deriva-
tives.” For detailed descriptions and proofs see Ref. 21 or
any other reference on pseudodifferential operators.
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