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Discrete Radon Transform 
GREGORY BEYLKIN 

Abstract-This paper  describes  the  discrete  Radon  transform  (DRT) 
and  the  exact  inversion  algorithm  for  it.  Similar  to  the  discrete  Fourier 
transform  (DFT),  the  DRT  is defined for  periodic  vector-sequences  and 
studied as  a  transform  in  its own right.  Casting  the  forward  transform 
as  a  matrix-vector  multiplication,  the key observation  is  that  the  ma- 
trix-although very large-has  a  block-circulant  structure.  This  obser- 
vation  allows  construction of fast  direct  and  inverse  transforms.  More- 
over, we show  that  the  DRT  can be  used to  compute  various  gen- 
eralizations of the  classical  Radon  transform  (RT)  and,  in  particular, 
the  generalization  where  straight  lines are  replaced by curves  and 
weight  functions are  introduced  into  the  integrals  along  these  curves. 
In  fact, we describe  not  a  single  transform,  but  a  class of transforms, 
representatives of which correspond  in  one way or  another  to  discrete 
versions of the  RT  and  its  generalizations. An interesting  observation 
is that  the  exact  inversion  algorithm  cannot be obtained  directly  from 
Radon’s  inversion  formula. 

Given the  fact  that  the  RT  has  no  nontrivial  one-dimensional  analog, 
exact  invertibility  makes  the  DRT  a  useful  tool  geared  specifically  for 
multidimensional  digital  signal  processing.  Exact  invertibility of the 
DRT,  flexibility  in  its  definition, and  fast  computational  algorithm affect 
present  applications  and  open  possibilities  for new ones.  Some of these 
applications  are  discussed  in  the  paper. 

T 
INTRODUCTION 

HE discrete Radon transform (DRT) is  a  discrete ver- 
sion of the classical Radon transform (RT) [l]  and 

some of its generalizations [2]-[4]. The  DRT defined and 
described in this  paper is exactly invertible in an efficient 
manner. Since  RT  (and,  hence,  DRT)  have no nontrivial 
analog in the one-dimensional space, exact invertibility 
makes DRT  a useful tool geared specifically for multidi- 
mensional digital signal processing. 

Discrete versions of the classical RT  are being used in 
signal processing and there is  an  extensive  literature de- 
voted to this subject. Procedures which are  discrete ver- 
sions of the  RT  are known as slant stack [5], tau? trans- 
form [6], [7 ] ,  velocity filtering [8], [9], fan filtration [9], 
and beam forming [lo]. These procedures were success- 
fully used in various applications such as ground roll  re- 
moval [8], plane wave decomposition [ 111-[  141, P-S sep- 
aration [ 151, interpolation and resampling of data [8],  and, 
also, in procedures such as velocity analysis and beam 
steering. Some of these applications depend on inverti- 
bility of the  RT. 

There  are  two  major classes of algorithms for 
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show that DRT  can be used. to  compute various generali- 
zations of the classical RT, in particular, the generaliza- 
tion where straight lines are replaced by curves and  weight 
functions are introduced into  the integrals along those 
curves.  In  fact,  we describe not a single transform, but a 
class of transforms. The representatives of this class cor- 
respond in one  way or another to discrete versions of the 
RT  and  its generalizations. 

We treat the inverse problem as  a  linear algebra prob- 
lem  and  reduce it to solving a  linear  system of equations 
with a block-circulant matrix. This  approach allows us to 
define the DRT in a consistent way and to obtain a’simple 
inversion procedure. Although this inversion procedure 
can  be classified as  an algebraic reconstruction technique, 
it does not require solving a  large linear system.  Instead, 
inversion proceeds  frequency by frequency  without iter- 
ations an requires only solving a small linear  system for 
each frequency. An interesting feature of the DRT is that 
its inversion procedure  is related to the discrete form of 
Radon’s inversion formula, but cannot be derived from 
this formula directly. 

We  also  note that the results of this paper  can  be ex- 
tended  to the case of more than one spatial variable. 

I. CLASSICAL  RADON TRANSFORM 
We start by describing the classical RT and one of  many 

possible discretizations of it. We will use it to motivate 
the definition of DRT  and  make  a  comparison of exact 
inversion to  an  approximate inversion based  on the Ra- 
don’s inversion formula. 

The classical Radon transform of a function u of two 
variables is  a function Ru defined on  a family of straight 
lines.  The value of the Ru on  a  given straight line is the 
integral of u along this line.  We  choose  to describe a  line 
in the plane ( t ,  q) as 

t = 7 + p q ,  

where 7 and p are parameters. Using  terminology  adopted 
in seismic applications, 7 is intercept time and p is slope. 
Thinking of t as  a  time  and q as  a spatial variable, the 
function u(t,  q) represents a  seismogram. The RT in this 
case is 

n +m 

and is known  as the tau? transform or slant stack.  Ra- 
don’s inversion formula  can be written in operator nota- 
tion as 

R*KR = I ,  (1.2) 

where K 
a n d  
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Trace # 
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conjugation,  it is sufficient to  consider (3.4) for k = 0, 

should be replaced by (N - 1)/2 if N is 
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It follows from (4 .6)  that if u = 1, matrices R, are given 
by 

These  are  the matrices considered in the example  in Sec- 
tion 11. In  the definition (4 .7) ,  the description of straight 
lines is the  description of the phase function. The recip- 
rocal of the parameter u in (4 .7) ,  l /u ,  plays the  role of 
‘‘number of slopes  per  time  step” and eliminates  the use 
of interpolation. 

Another choice of matrices @k), 

defines the  DRT  for  the  case with curves. Again,  the  de- 
scription of curves is  the description of the phase func- 
tion. Entries of the matrix A ( j ,  I )  are interpreted as weight 
coefficients. 

In  the most general  case, by analogy with (4 .8) ,  we can 
write the transform matrices in the following form: 

Rjl(k) = A10.3 0 0 10.9 17p8001 Tc 
10.310 0 10.9 117 6.o4c -0.17001 
0 Tc 
1.527810. 117 6.o4co Tc 
-22.537 -p5pTa0.6 1m6 0 0 10.5 16h0.00999 Tc 
9.  role 



168 IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-35, NO. 2 ,  FEBRUARY 1987 

= N/k0(2J + l) ,  where kmin 5 ko 5 k,,,), estimates of 
the eigenvalues of the matrix Hl.[ (k )  can be obtained using 
those of the eigenvalues of the matrix PE in (5.2).  Hence, 
the frequency band within which the transform in (4.7)  is 
invertible and the inversion is  stable can be  estimated. 

VI.  THE  DRT AND RADON’S INVERSION FORMULA 

So far we considered the inversion of the DRT as an 
algebraic reconstruction technique. In this section we de- 
scribe the relation of our inversion algorithm to algo- 
rithms based on Radon’s inversion formula. 

Instead of the identity in (3.8), we can write 

R*(RR*)-’R = I .  (6.1) 

This formula produces an  alternative inversion procedure. 
We compute the following. 

la) The FFT of y(n),  where y(n) is the  DRT of x(n) in 
(2.1). 

2a) A solution to  a  linear (2J  + 1) X (21  + 1) system 

j ( k )  = &k) $(k), (6.2) 

for k = kmin, * * , k,,, to obtain $(k) .  We set G(k) = 0 
outside  the frequency band, i.e.,   fork = 0, * 9 kmin  - 
1, and k = k,,, + 1, - * , N/2. In (6.2),  the matrices 
B(k) are  as follows: 

&k) = &k) I?*@). (6.3) 

3a) Inverse  FFT of &(k) to obtain w(n). 
4a) The adjoint transform (3.1) of the sequence w(n) 

to obtain x(n). 
We note that if the adjoint transform is computed by 

the procedure described in Section IV, then step 3a) is not 
necessary. 

The significance of considering (6.1) becomes clear 
when the inversion procedure la)-4a) is compared to the 
inversion based on Radon’s inversion formula (1.2). It 
follows from RR*93 175. Tm
(&(k) )Tj
/F20 1 Tf -0.01001 Tc 
10.80.6 2230.6 72.2must 0 e(consider287 Tc 
1.correspond
(la)-4a) )Tj
-04)Tj
0 Tc 
16 388.3 Tm
(to )Tj
0.099 TcTc 
9.j48 0 Td
(is )Tj
0 Tc 
2.diureetiza3 0 Td 0  
10.16 Tc 
 02fol62230.6 72.23056 0 T
(the )Tj
0.
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One can see now that  the expression in (4.8) is a  discrete 
analog of the kernel in the inner integral in (7.2). If we 
consider  an  even  more general transform 

( R 4  (7, P )  

II i m  n + m  

= \ ~ df e-2r$T 1 dq a( f, q) a ( p ,  q, f )  e-2T’’(p,q,f), 
-. m -m 

(7.3) 

then (4.9) provides a  discrete version of its kernel. In all 
of these cases,  the  discrete formulation falls within the 
definition of the  DRT.  Therefore,  the algorithm for com- 
puting the  DRT and the  inverse transform can be  utilized. 

The geometrical objects  over which we  integrate need 
not be simple curves (see remark 2 of Section 11). These 
objects can be of any shape as long as we  can  discretize 
the integral in the form (2.1).  This  opens  a number of  new 
possibilities in digital processing of seismograms as well 
as image processing. 

In signal processing of seismograms there  are situations 
where it might be advantageous to integrate along curves 
or strips bounded by curves,  hyperbolas,  for  example. 
Also,  the ability to  compute integrals as those in (7.2) and 
(7.3) with the  DRT algorithm combined with results in 
[22]-[24] might help to cast inversion and migration pro- 
cedures as  a signal processing algorithm employing the 
DRT as the main computational engine. 

In image processing, integration over different shapes 
is used for pattern recognition.  The classical RT is known 
-as the Hough transform [34] in these  applications, and the 
generalized RT in this case can be viewed as  a process of 

comparing”  a given pattern produced by transform ma- 
trices R, with the  signal  array. The  tau-P domain in this 
case is the domain of responses. If, in  this  domain, re- 
sponses for different shapes can be isolated, then the in- 
version procedure makes it possible to  separate patterns 
in the original domain. 

Since weight functions can be adequately implemented 
in transform matrices,  we can choose these weights for 
each given seismogram separately.  This can be achieved 
by using some statistical measure on  the data set.  For  ex- 
ample,  we can use semblance criteria [35] to compute 
weights. This  leads  to  the nonlinear transform as  follows. 

1) Given a multidimensional signal array,  we choose 
transform matrices R, in (2.1) [or k(k) in (4.4)] 
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Fig. 6. Example of mask in the  tau-P domain to remove one upgoing event 
in seismogram in Fig. 4. 
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tion  and  analysis  of  record sections,” 


