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Wavelets and Fast Numerical Algorithms
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ABSTRACT. Wavelet-based algorithms

e

in numerical analysis are similar

3 1

s exhibit a numher of imnoartant

properties due to the controllable localization of wavelets in both time and
frequency domains and their orthogonality to low degree polynomials. The
multiresolution structure of the wavelet expansions brings about an effi-
cient organization of transformations. Moreover, wide classes of operators
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In the usual transform methods, the functions of the basis (e.g. exponentials,
Chebyshev polynomials, etc.) are chosen to be eigenfunctions of some differ-
ential operator (e.g. solutions of the Sturm-Liouville problem). The choice of
the differential operator and, hence, of the basis functions, is dictated by the
availability of fast algorithms for expanding an arbitrarv function infa_the hasis.

Unfortunately, classes of operators which have a sparse representation -in such
bases are very narrow.

Wavelets, on the other hand, are not solutions of a differential equation. These
functions are defined recursively and are generated via an iterative algorithm.
They are translations and dilations of a single function.! Instead of diagonalizing
some differential operator, representations in the wavelet bases reduce a wide
class of operators to a sparse form. Here the orthogonality of wavelets to the

Historically, the orthonormal bases of wavelets were first constructed by
Stromberg [33] and.then by Meyer [25]. Later, the notion of the Multiresolution
Analysis was introduced by Meyer [26] and Mallat [23]. Orthonormal bases of
compactly supported wavelets were constructed by Daubechies [16] There are
many new constructions of orthonormal bases with a controllable localization

in the time—frequency domain, notably ‘wavelet-packet” bases in [13] and [15],
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useful tools for approximation.

A novel aspect of representing operators in the wavelet bases is the so-called
non-standard form {7]. The remarkable feature of the non-standard form is the
uncoupling of the interactions between the scales. The non-standard form leads
to an order N algorithm for evaluating operators on functions. It is also quite
remarkable that the error estimates for the non-standard form lead to a proof of
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(1.6) VaC---CV,C Vi C Vg, VocL2RY) |

instead of (1.4). In numerical realizations the subspace Vy is finite dimensional.
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(1.9) as
(1.10) L HO = male/20/),
where '
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and the 2-7r—peribdic function myq is defined ‘as

L-1

(1,12) malf) = 9~ 1/2 Sohettt
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k=0

Second, the orthogonality of {¢x(z — k)}rcz implies that

+oo +00
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and, therefore,
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Using (1.10), we obtain
1
(1.16) Z|m0(§/2+7rl)|2|<?(f/2+7rl)|2 =5
: l€z :

é.nd,‘ by taking the sum in (1.16) separately over odd and even indices, we have

(1.17) > Imo(€/2 + 2md)[?|p(¢/2 + 2r))?

lez

+ lZZj Imo(/2 + 2ml+ m)PIp(€/2 + 2nl + )P = o
e .

Using the 2ﬂ-periqdicity of the functiomr mg and (1.15), we obtain (after replacing
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or, equivalently, the Fourier transform of 1 by
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it is not difficult to show (see e.g.; [28], [16], [17]), that for each fixed scale
j € Z, the wavelets {1; x(z) = 277/2¢)(2"72 — k) }xez form an orthonormal basis

of WJ": . s e .

Equation (1.18) can also be viewed as the condition for exact reconstruc-
tion for a pair of the quadrature mirror filters (QMFs) H and G, where H =
{re}rzt=1 and G = {gk}E=L"". Such exact QMF filters were first introduced
by Smlth and Barnwell [32Tfor subband coding, '

We will not go into a full discussion of the necessary and sufficient conditions
for the quadrature mirror filters H and G to generate a wavelet basis and refer
to [17] for the details. The coefficients of the quadrature mirror filters H and

G’ are computed by solving a set of algebralc equations (see eg. 17]) The
_.Q..P_—.,.J—(‘LAQ\ = >
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Alternatively, using

(1.27) ¢() = 2m) 2 [[ mo(27%9),

=1

the moments M,,, may be obtained within the desired accuracy as a limit of &
FRaupoioolo ”“:ﬁif‘{ii‘%—f‘W"“‘“‘f‘ aLoaimen - caa(MAm=M—-1 ¢ 1A

Jj=m

r4+1) __ ] m —j(r+1 (r) h
(1.28) M = 3" ; )2_J< IM) ME,
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where the operators T},

(214) Tj : V]' -—) V]',

are defined by T; = P;TP;.

lf I}hprn 1€ a rAarcnct cnala oo dlawn

e —

(215) T = {{A]aB]ij}]EZ]Sn»Tn}v

where T,, = P,TP,. If the number of scales is finite, then j = 1,2,... nin (2.15)
and the operators are organized as blocks of a matrix (see Figures 1 and 2).
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FIGURE 2. An example of a matrix in the non-standard form
(see Example 4.2).
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FIGURE 3. The non-standard form of the same matrix as in

cal and horlzontal bands (which are present in Figure 2 due to
fiﬂ-ﬁ




100 GREGORY BEYLKIN

(2.17) ] = / / K (z,y) ¥ix(z) @i (y) dady,
and ‘
(2.18) ﬂW://K@w%A@%MMM@

The operator T; is represented by the matrix s7,

(2.19) #W=//K@w%Amwmwmw

3. The standard form.

basis. Instead of introducing the standard form in this manner, we emphasize
the connection with the non-standard form. The standard form is obtained by
representing

(3.1) v, =P w;,

i'>3
and considering for each scale 7 the operators {Bj:’, F;: bt

(3.2) _ Bl i W — W, .
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wb@;g&g}é})@ distributignal kernel of T then assnming that the eumhgle g of

N

T and o* of T satisfy the standard conditions

(4.7 | 08 07 0(2,€) | < Cap(1+] € [)) 47
(4.8) | 08 82 0*(2,6) | < Cap(1+] € NP,
we have the inequality

) ) ) 227 Oy

J J ] I —
(4.9) laz,z! + lﬁz,ll + I'Yz,zi =+ - M+

for all integer 1, 1.
Suppose now that we approximate the operator To by the operator T8 ob—

bands of width B > 2M around their diagonals. We obtain
B. C N
(4.10) : Ty ~To || < B log, N,

where C' is a constant determined by the kernel K and log, N is the number of
scales in the representation. In most numerical applications, the accuracy € of
calculations is fixed, and the parameters of the algorithm (in our case, the band

-
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(4.15) y) =T"(1)(y)
satisfy the dyadic bounded mean oscillation (B.M.O.) condition,
(4.16) Sup o / 18(z) — ms(B)2dz < C,

s Ml

where J is a dyadic interval and

1

(4.17) mi(6) = 17 [ Plalde.
IJ1 /s

Again we refer to 7] for details.

The compression of operators results in fast algorithms for evaluation of op-
erators on functions. We present here one example and refer to (7] for additional
examples.

EXAMPLE 4.2. In this example, we consider the matrix
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by computing in the wavelet system of coordinates. Finally, the last column
contains the compression coefficients Ceomp, defined by the ratio of N? to the

number of non-zero elements in the non-standard form of of the matrix.

5. The operator d/dz in wavelet bases.

s It s e e e e r—— L

S —

Hilbert and Riesz transforms) we may compute the non-standard form in the
wavelet bases by solving a small system of linear algebraic equations [4]. As an
example, we construct the non-standard form of the operator d/dz. The matrix
elements o, B8], and v}, of A;, B;, and T';, where 4,1,7 € Z for the operator
d/dz are easily computed as

oo

and
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where
—0

+o00
(5.10) T = / wlz —1) %w(m) dz, leZ.

Therefore, the representation of d/dzx is completely determined by the coefficients
r;.in (5.10) or in other words, by the representation of d/dz on the subspace V.
Rewriting (5.10) in terms of ¢(€) (see (1.11)), we obtain

+o00 .
(5.11) "= / 1B(6)[2 (€)™ de.

-0

Thus, the coefficients r; depend only on the autocorrelation function of the scal-
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Remark. The autocorrelation function of the scaling function (see (5.24))
has 2M — 1 vanishing moments and its "zero moment” is equal to one (see (5.25)
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Solving equations (5.12), (5.13), we present the results for Daubechies’ wave-
lets with M = 2,3. For further examples we refer to [4].

1. M=2

T = T3 = 19

We note that the coefficients (—1/12,2/3,0,—-2/3,1/12) of this example can
be found in many beoks on numerical analysis as a choice of coefficients for
numerical differentiation.

2 M=3
_ 7 25 3
ay = 64’ asz = as = )
and
- 272 53 - 16 , 1
= — — To = ——— = - = m—
YTU3650 2365 0 1005 4T T 2020
The structure of non-standard and standard forms of derivative operators is
illustrated in Figures 6 and 7. '

4

‘
NN
FIGURE 6. Sparse structure of the non-standard form of deriva-

tive operators. The width of the bands depends only on the
choice of the basis and is equal to 2L — 3.
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We present here two tables illustrating such preconditioning applied to the
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Kp

64

0.14545E+04

0.10792E4-02

128

0.58181E4-04

0.11511E+02

256

0.23272E4-05

0.12091E+02

512

0.93089E+05

0.12604E+-02

1024

0.37236E406

0.13045E+02

S P
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64 0.10472E+04 0.43542E+01

128 0.41886E+04 0.43595E4-01

256 0.16754E+05 0.43620E4-01
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