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On wavelet-based algorithms for solving
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in the wavelet “system of coordinates.” For simplicity, we consider the ordinary !
O(h?) finite-difference scheme, and use wavelets only to perform the “linear alge- ;
bra.” Our main tool is the diagonal preconditioning available for the periodized
differential operators in the wavelet bases. Lo
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with boundary conditions then in the wavelet system of coordinates there is a
diagonal preconditioner which allows us to perform algebraic manipulations only
with the sparse matrices whose condition humber is O(1), thus also leading to
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elliptic differential operators in the wavelet “system of coordinates.” To illustrate g |
the difference between our approach and the existing numerical methods for f ,
solving the two-point boundary value problems of this kind, such as multigrid (see, -
e.g., [Bri]) or multilevel (hierarchical) methods or the very simple and elegant
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to find the solution of the problem in O(N) operations. However, since the ordinary
matrix representation of the Green’s function requires O(N?) significant entries,
fast algorithms for its construction are not readily available. Our method permits
solving the problem in O(N) operations as well, but since the representation of the
Green’s function in the wavelet bases requires (for a given accuracy) only O(N)
entries, we concentrate on describing a fast algorithm for its construction.

Once the Green’s function is obtained, finding the solution reduces to the
matrix-vector multiplication, which in the wavelet system of coordinates is an
O(N) procedure. In addition, if the entries of the vector are values of a smooth
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time. We aporoach the multidimensional problems usine the alternating direc-
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Green'’s functions of the two-point boundary value problems. We note that our
use of the diagonal preconditioning differs from that in [J] since we apply it to
the periodized differential operators and solve the boundary value problem by
rank-one perturbation.

For simplicity, we consider the ordinary O(k?) finite-difference scheme for
the two-point boundary value problem, and use the periodized wavelets only
to perform the “linear algebra.” Such an approach enables us to make a clear -
comparison with other techniques. On the other hand, it also carries some of the
limitations of the finite-difference scheme. A more consistent approach which
uses the wavelet bases of the interval [Cetal] to achieve an approximation of
order /¥, where p is arbitrary, is currently being developed and will be described
elsewhere.
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where the N x N matrix L is as follows

—(aip + a3pn) ax o - 0 0 0
@3p —@p+asp) asp o0 0 0
L=
0 0 0 - ayap —(an-aptan-ip) an-1p
0 0 0 - 0 avon —(@n-1 + Ansip) /
(12.11)
T— T Faw tha ~anditinn numher nf the matrix T, to be laree.

L ————————————————
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In order to use periodized d1fferent1a1 operators we consider the matrix L as a
£ S SR LI -2 - o T Gl e—————————————————————————————————
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L=A- al/zele,{, — aN+1/zeNe{, (12.12)

where

—(aip +asp) aip o - 0 0 aip
a3 —(@sp +asp) asp - 0 0 0
/

(12.13)
and the unit vectors e;, ey are given by
1 0
0 0
ee=]:l,ex=1]:1. (12.14)
0 0
0 1
In this section we consider the case where the size of the function a does not
change 51gn1ﬁcantly over the mterval (0 l) To 111ustrate the effect of dlago-
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transformed matrix as

panap — aip)el —ek), (12.21)

where p is a factor which depends on the size of the matrix A. In order to obtain
A,,, we have to transform further by applying the wavelet transform to the rows
of the intermediate result. Thus, we obtain

(c",0) = plans1p — a1)@] — &), (12.22)

Let us introduce the following notation:

T
g=J. 1=1n (1223,

where r; are vectors of size N — 1 and p is a scalar factor (common to both vectors),

2)
i= , (12.24)
A

fd
f= (fs> ) (12.25)

Also, let 2a = ajp + anvip, @ = aip/Qa), B = an«12/(2a), so that oo+ 3 = 1. We
now rewrite (12.16) as

B 0 ” arlr,{,+ﬂrNr1T plar; + PBry) d i
¢ 0) T\ plaxh +peT) P s) \r)

(12.26)
where
' =2ap(8 — )T - r). (12.27)
By eliminating s,
T+ T d s .
- lonthryd S (12.28)

: p 2ap?°
we obtain the (V — 1) x (N — 1) system of linear algebraic equations for d,
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12.5 Various extensions

12.5.1 Preconditioning to compensate for variations in a

In Section 12.3 we assumed that the function a does not change significantly
over the interval (0, 1). If @ is such that the finite difference scheme in (12.9) is
appropriate for solving the two-point boundary value problem, then we rescale
(12.9) by multiplying the matrix of the system in (12.9) on both sides by the
diagonal matrix '

1
Pazdiag<—,~—1——,... ! ) (12.44)

We obtain instead of (12.9),

ai-172 ai—12 t Qi1 Aiv12 i
Ry, ST, Ge hZf’

[Tz -

: ‘-E""" "H; W’=

where
v,-:u,-\/cT,- = 1,,N (1246)

This corresponds to considering the operator

1 &8 Ou
— = = 47
a(x) ox (a(x) Bx) _ (12.47)
instead of the operator £ in (12.7).
If a is sufficiently smooth, then we have
a(x — %h) 2
——= =1 +0H"), 12.48
vakx — h)a(x) ) ( )
—iny+a@x+Lh
ax— ghrabt 3l L ou), (12.49)
a(x)
and
ab+ k) _ 1+ 01 (12.50)
va(xalx + h) B ' ’

Thus, the matrix L corresponding to (12.45) may be written as

L =Ly +#°R, (12.51)
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analysis, wavelets and fast algorithms on an interval,” C. R. Acad. Sci.,
sér. 1, to appear.
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