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On Multiresolution Methodsin Numerical AnalysisGregory BeylkinAbstract. As a way to emphasize several distinct features of the mul-tiresolution methods based on wavelets, we describe connections betweenthe multiresolution LU decomposition, multigrid and multiresolution re-duction/homogenization for self-adjoint, strictly elliptic operators. Wepoint out that the multiresolution LU decomposition resembles a directmultigrid method (without W-cycles) and that the algorithm scales prop-erly in higher dimensions.Also, the exponential of these operators is sparse where sparsity is de�nedas that for a �nite but arbitrary precision. We describe time evolutionschemes for advection-di�usion equations, in particular the Navier-Stokesequation, based on using sparse operator-valued coe�cients. We pointout a signi�cant improvement in the stability of such schemes.1991 Mathematics Subject Classi�cation: 65M55, 65M99, 65F05, 65F50,65R20, 35J, 76D05Keywords and Phrases: multigrid methods, fast multipole method,wavelet bases, multiresolution analysis, multiresolution LU decompo-sition, time evolution schemes, exponential of operators, advection-di�usion equations1 IntroductionMultiresolution methods have a fairly long history in numerical analysis, goingback to the introduction of multigrid methods [10], [18] and even earlier [22]. Arenewed interest in multiresolution methods was generated recently by the develop-ment of wavelet bases and other bases with controlled time-frequency localization[23], [20], [13], [19], [12], [2], [1], etc.. The introduction of these new tools allowsus to relate numerical analysis with harmonic analysis and signal processing bythe fundamental need of an e�cient representation of operators and functions.It is useful to compare the wavelet approach with the multigrid method (MG)and the Fast Multipole Method (FMM). For most problems the wavelet approach,FMM, and MG provide the same asymptotic complexity. The di�erences aretypically in the \constants" of the complexity estimates. These di�erences will,most likely, diminish in the future.Documenta Mathematica � Extra Volume ICM 1998 � III � 481{490



482 Gregory BeylkinA typical MG is a fast iterative solver based on a hierarchical subdivision.Hierarchical subdivision is also used in FMM which was initially proposed forcomputing potential interactions [21], [17]. This algorithm requires order N oper-ations to compute all the sumspj =Xi6=j qiqjjxi � xj j ; where xi 2 R3 i; j = 1; : : : ; N; (1)and the n
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On Multiresolution Methods in Numerical Analysis 4853 Sparsity of Exponential OperatorsIf L is a self-adjoint, strictly elliptic operator then the operator eLt is sparse inwavelet bases (for a �nite but arbitrary precision) for all t � 0. This observationhas a signi�cant e�ect on the methods for solving PDEs.Let us consider a class of advection-di�usion equations of the formut = Lu+N (u); x 2 
 � Rd; (7)where u = u(x; t), x 2 Rd, d = 1; 2; 3 and t 2 [0; T ] with the initial conditions,u(x; 0) = u0(x); x 2 
; (8)and the linear boundary conditionsBu(x; t) = 0; x 2 @
; t 2 [0; T ]: (9)In (7) L represents the linear and N (�) the nonlinear terms of the equation, re-spectively.Using the semigroup approach we rewrite the partial di�erential equation (7)as a nonlinear integral equation in time,u(x; t) = e(t�t0)Lu0(x) + Z tt0 e(t��)LN (u(x; �)) d�; (10)and describe a new class of time-evolution schemes based on its discretization.A distinctive feature of these new schemes is exact evaluation of the contribu-tion of



486 Gregory Beylkinwhere bf denotes the Fourier transform of the function f . It is not di�cult to showthat the projection operator on the divergence free functions (the Leray projection)may be written with the help of the Riesz transforms,P = 0@ I 0 00 I 00 0 I 1A�0@ R21 R1R2 R1R3R2R1 R22 R2R3R3R1 R3R2 R23 1A : (16)Applying the divergence operator to (11), we obtain ��p = P3k;l=1 @k@lukuland an expression for pressure in terms of the Riesz transforms, p =�P3k;l=1 RkRl(ukul): Substituting the expression for the pressure into (11) andtaking into consideration that the Riesz transforms commute with derivatives and,moreover, Rk@l = Rl@k, we obtainut = ��u�P( 3Xm=1um@mu); (17)instead of (11) and (12). Equations (17) are now in the form (7), where L = ��and N (u) = �P(P3m=1 um@mu). The transformation from (11) and (12) to (17)is well known and appears in a variety of forms in the literature. Here we followeda derivation presented by Yves Meyer at Summer School at Luminy in 1997.The apparent problem with (17) for use in numerical computations is thatthe Riesz transforms are integral operators (which makes (17) into an integro-di�erential equation). Let us point out that the presence of the Riesz transformsdoes not create serious di�culties if we represent operators Rj ; j = 1; 2; 3 in awavelet basis with a su�cient number of vanishing moments (for a given accu-racy). The reason is that these operators are nearly local on wavelets, and thus,have a sparse representation. This approximate locality follows directly from thevanishing moments property. Vanishing moments imply that the Fourier trans-form of the wavelet and its several �rst derivatives vanish at zero, and therefore,the discontinuity of the symbol of the Riesz transform at zero has almost no e�ect.The precise statements about such operators can be found in [6] and [5].Finally, in rewriting (17) as ut = Lu + N (u); we incorporate the boundaryconditions into the operator L. For example, u = L�1v means that u solvesLu = v with the boundary conditions Bu = 0. Similarly, u(x; t) = eLtu0(x)means that u solves ut = Lu, u(x; 0) = u0(x) and Bu(x; t) = 0.Computing and applying the exponential or other functions of operators in theusual manner typically requires evaluating dense matrices and is highly ine�cientunless there is a fast transform that diagonalizes the operator. For example, if Lis a circulant matrix, then computing functions of operators can be accomplishedusing the FFT. It is clear that in this case the need of the FFT for diagonalizationprevents one from extending this approach to the case of variable coe�cients.In the wavelet system of coordinates computing the exponential of self-adjoint,strictly elliptic operators always results in sparse matrices, and therefore, using theexponential of operators for numerical purposes is an e�cient option [8].Further development of the approach of [8] can be found in [9], where issuesof stability of time-discretization schemes with exact treatment of the linear partDocumenta Mathematica � Extra Volume ICM 1998 � III � 481{490
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On Multiresolution Methods in Numerical Analysis 489for � > 0, together with an initial condition,u(x; 0) = u0(x); 0 � x � 1; (25)and periodic boundary conditions u(0; t) = u(1; t). Burgers' equation is the sim-plest example of a nonlinear partial di�erential equation incorporating both lineardi�usion and nonlinear advection. In [8] a spatially adaptive approach is used tocompute solutions of Burgers' equation viaun+1 = Q0(L�t)un � �t2 Q1(L�t) [un@xun+1 + un+1@xun] : (26)We refer to [9] for the analysis of stability of ELP schemes.4 ConclusionsThe wavelet based algorithms described above are quite e�cient in dimension one.Although algorithms described above scale properly with size in all dimensions,establishing ways of reducing operation counts remains an important task in di-mensions two and three. This is an area of the ongoing research and the progresswill be reported elsewhere.References[1] B. Alpert. A Class of Bases in l2 for the Sparse Representation of IntegralOperators. SIAM J. Math. Anal, 24(1):246{262, 1993.[2] B. Alpert, G. Beylkin, R. R. Coifman, and V. Rokhlin. Wavelet-like bases forthe fast solution of second-kind integral equations. SIAM Journal of Scienti�cand Statistical Computing, 14(1):159{174, 1993.[3] B. Alpert, G. Beylkin, D. Gines, and L. Vozovoi. Toward adaptive solutionof partial di�erential equations in multiwavelet bases. 1998. in progress.[4] A. Bensoussan, J.L. Lions, and G. Papanicolaou. Asymptotic Analysis forPeriodic Structures. North-Holland Pub. Co., New York, 1978.[5] G. Beylkin. On the representation of operators in bases of compactly sup-ported wavelets. SIAM J. Numer. Anal., 29(6):1716{1740, 1992.[6] G. Beylkin, R. R. Coifman, and V. Rokhlin. Fast wavelet transforms andnumerical algorithms I. Comm. Pure and Appl. Math., 44:141{183, 1991.[7] G. Beylkin and N. Coult. A multiresolution strategy for reduction of ellip-tic PDE's and eigenvalue problems. Applied and Computational HarmonicAnalysis, 5:129{155, 1998.[8] G. Beylkin and J.M. Keiser. On the adaptive numerical solution of nonlinearpartial di�erential equations in wavelet bases. J. Comp. Phys., 132:233{259,1997.[9] G. Beylkin, J.M. Keiser, and L. Vozovoi. A new class of stable time dis-cretization schemes for the solution of nonlinear PDEs. PAM Report 347,1998. submitted to JCP.Documenta Mathematica � Extra Volume ICM 1998 � III � 481{490
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