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ABSTRACT

The key element in the design of fast algorithms in n



2. BASES WITH SMOOTH FUNCTIONS.

The original goal of constructing wavelets was to �nd a smooth generalization of the Haar basis. It is, therefore, not
surprising that some de�nitions of wavelets include the requirement that the basis functions are at least continuous.
The smoothness is desireable to ensure suÆciently fast decay of the



3. POLYNOMIAL



Thus, up to rescaling, we have an interpolating basis of scaling functions.

The Legendre nodes x0; : : : ; xk�1 are not uniform and concentrate near the boundary. The condition numbers of
boundary operators do not become large and the boundary conditions can be succesfully used for polynomials up to
degree of about 30. For higher degrees, the concentration of the nodes near the ends of the interval start to create
problems since the distances between the nodes are of order O(1=k2). Such spatial concentration of nodes also causes
diÆculties in time evolution schemes by restricting the size of time steps. Yet, the range of degrees is wide enough
for practical purposes and signi�cantly extends what can be done with mutiresolution bases PDE solvers.

Let us de�ne Vk
n as a space of piecewise polynomial functions,

V
k
n = ff : the restriction of f to the interval (2�nl; 2�n(l + 1)) is

a polynomial of degree less than k, for l = 0; : : : ; 2n � 1;
and f vanishes elsewhereg:

(6)

Let �0; : : : ; �k�1 be a basis ofV
k
0 , then the �



The scale consistent derivative operator on Vk
0 is constructed as a transition matrix Rn between the coeÆcients

of the expansion of the function and that of its derivative. The scale consitency means that on Vk
n the transition

matrix is simply rescaled by 2n since the derivative operator is homogeneous of degree one. The transition matrix
Rn has a block tridiagonal structure

Rn =

0
BBBB@

r0 r�1

r1
. . .

. . .

. . .
. . . r�1
r1 r0

1
CCCCA ; (15)

each block rl being a k � k matrix. The matrix blocks r1 and r�1 describe interactions with the left and the right
neighboring intervals, respectively, and have rank one as matrices. There are two free parameters associated with the
two neighboring intervals, and these de�ne the family of transition matrices. By choosing these parameters, the blocks
r1 or r�1 can be made zero, thus providing us with an analogue of forward and backward di�erences.3 It is easy to
impose a linear boundary condition since such condition amounts to supplying a value to one of the free parameters.
The boundary operators have a reasonable condition number since we e�ectively are using the Gauss-Legendre nodes
on the interval (to make it obvious, consider the interpolating scaling functions). The classical Runge example for
interpolation then demonstrates the bene�ts of the Gauss-Legendre nodes versus the equally spaced nodes (which is
equivalent to using the usual Multiresolution Analysis and smooth basis functions).

This multiwavelet approach has been used to build an adaptive multiresolution PDE solver for advection-di�usion
equations3 and currently work is under wa



For any n � 0, the �rst n functions  j , j = 0; : : : ; n�1, form a Chebyshev system.12,13 In particular, the number
of zeros of  j in [�1; 1] is equal to j.

Although the functions  j are de�ned on the interval, they are easily extended to the whole line using the right
hand side of (18) as the de�nition of the extension. The functions  j are orthogonal on both the interval [�1; 1] and
the real line (�1;1), and we set Z 1

�1

 j(x) l(x) dx = Æjl ; (21)

and Z 1

�1

 j(x) l(x) dx =
1

�j
Æjl : (22)

We note that in the original papers18,14,17 the functions are chosen to be orthonormal on (�1;1).

From de�nition (17) it follows that

eicxt =

1X
j=0

�j  j(x) j(t) : (23)

If we keep � 2c=� +K log c terms, where K = K(�) is a constant, we obtain (for any � > 0) an approximation to
eicxt. This is the most economical expansion of this type for the exponential.

The PSWFs have been used in signal processing for some time, especially the �rst function,  0(x), since it
provides the optimal window for a given bandwidth in terms of concentration in the time-frequency domain. Yet,
their use has not been wide. In the next section we describe several new developments that will provide a path for
a wider use of these functions in signal processing and numerical analysis.

5. GENERALIZED GAUSSIAN



For a given bandlimit 2c > 0 and accuracy �2 > 0, we approximate u(x) on the interval [�1; 1] using the sum

~u(x) =

MX
k=1

wk exp (2c tk x); (26)

where wk > 0 and M =M(c; �
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