On double integrals over spheres

R Burridge and G Beylkin

2

Radon transform. In § 4 using results of § 3 we derive some formulae in inverse scattering theory extending results of Devaney (1982a). We then discuss diffraction tomography where the inversion formula of § 3 yields a generalisation to what can be called multifrequency diffraction tomography. The same inversion formula is also used in the derivation of migration algorithms used in inverting seismic prospecting data (Beylkin and **Everidge** 1087a, b), thus establishing a relationship between multifrequency diffraction differentiates the same inversion formula is a set of the same inversion formul

j _a	
	1
γ <u>∞</u> γ <u>∞</u>	

R Burridge and G Beylkin

	$2 - \frac{n/2}{T} (1 - 1)$	is the surface area of th	a (n. 1) anhora Dr. ((2,0) this is	
₽. ₩ 14					
_					
		5			
): •					
í					
.					
·					
<u> </u>					
· <u> </u>	s .				
				*	
1					
1					
2.2	•				
) 					
1 <u>1</u>					
) 					
*					
					<u></u>

4

where ξ and η are defined as in the lemma. Using (3.10) in (3.8) and setting $r = \rho(\lambda + \mu)$ we have

$$I = \frac{\lambda \mu}{\Omega_{n-1}(\lambda + \mu)} \frac{1}{C(1 - \gamma)} \int_{0}^{\infty} |p|^{n-1} d|p| \times \int_{S^{n-1} \times S^{n-1}} f\left(|p| \frac{(\lambda \xi + \mu \eta)}{r}\right) \frac{W(r/(\lambda + \mu))}{r \sin^{n-3} \theta} d\xi d\eta$$
(3.11)

where

$$r = |\lambda\xi + \mu\eta|. \tag{3.12}$$

Next set

$$|p| = rk \qquad d|p| = r dk \tag{3.13}$$

to get

$$I = \frac{\lambda \mu}{2\Omega_{n-1}(\lambda + \mu)} \frac{1}{C(1 - \gamma)} \int_{-\infty}^{\infty} |k|^{n-1} dk$$
$$\times \int_{S^{n-1} \times S^{n-1}}^{\cdot} f(k(\lambda \xi + \mu \eta)) \frac{r^{n-1} W(r/(\lambda + \mu))}{\sin^{n-3} \theta} d\xi d\eta$$
(3.14)

where the integral over k has been extended to the whole real axis and

$$\sin^{n-3}\theta = [1 - (\xi \cdot \eta)^2]^{(n-3)/2}.$$
(3.15)

Inverse Fourier transform on the space $\mathbf{R} \times \mathbf{S}^{n-1} \times \mathbf{S}^{n-1}$ We can now formulate the following.

Theorem 1. Let g be a function on \mathbf{R}^n and \hat{g} its Fourier transform. Then

$$g(y) = \frac{1}{4(2\pi)^{n} \Omega_{n-1}} \int_{-\infty}^{\infty} |k|^{n-1} dk \int_{S^{n-1} \times S^{n-1}} d\xi d\eta \frac{|\xi + \eta|^{n-1}}{[1 - (\xi \cdot \eta)^{2}]^{(n-3)/2}} \\ \times W(\frac{1}{2} |\xi + \eta|, y) \hat{g}(k\xi + k\eta) \exp[i(k\xi + k\eta) \cdot y]$$
(3.16)

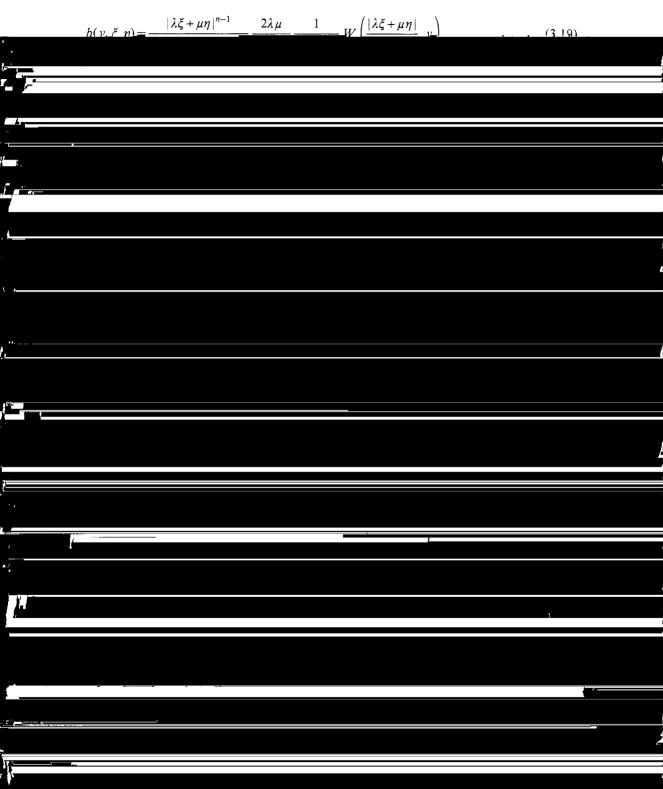
where W is an arbitrary function such that

$$\int_{0}^{1} W(\rho, y) \, \mathrm{d}\rho = 1 \tag{3.17}$$

and where $\Omega_n = 2\pi^{n/2}/\Gamma(\frac{1}{2}n)$ is the surface area of the unit sphere in \mathbb{R}^n .

Theorem 1 can be generalised further and leads to

Theorem 2. Let g be a function on \mathbb{R}^n and \hat{g} its Fourier transform. Let $\lambda = \lambda(y)$ and $\mu = \mu(y)$ be two positive functions on \mathbb{R}^n . Then


$$g(y) = \frac{1}{4(2\pi)^{n} \Omega_{n-1}} \int_{-\infty}^{\infty} |k|^{n-1} dk$$

$$\times \int_{S^{n-1} \times S^{n-1}} d\xi \, d\eta \, b(y, \xi, \eta) \hat{g}(k\lambda\xi + k\mu\eta) \exp[i(k\lambda\xi + k\mu\eta) \cdot y] \qquad (3.18)$$

6

R Burridge and G Beylkin

Using (2.11), (3.15), (3.19) and integrating over ψ , we have from (3.25)

$$g_{\mathbf{B}}(y) = \frac{1}{(2\pi)^n} \int_{k_{\min}}^{k_{\max}} k^{n-1} dk \frac{1}{1-\gamma(y)} \int_{\gamma(y)}^{1} d\rho \int_{S^{n-1}} d\nu \\ \times W(\rho, y) \rho^n (\lambda + \mu)^n \hat{g}(k\rho(\lambda + \mu)\nu) \exp[ik\rho(\lambda + \mu)\nu \cdot y].$$
(3.26)

Changing the order of integration in (3.26) we arrive at

$$g_{\rm B}(y) = \frac{1}{1 - \gamma(y)} \int_{\gamma(y)}^{1} d\rho W(\rho, y) g_{\rho}(y)$$
(3.27)

where

$$g_{\rho}(y) = \frac{1}{(2\pi)^n} \int_{\rho(\lambda+\mu)|k_{\min} \leq |p| \leq \rho(\lambda+\mu)k_{\max}} dp \, \hat{g}(p) \exp(ip \cdot y). \tag{3.28}$$

Formula (3.27) can be interpreted as a superposition of band-limited reconstructions g_{ρ} .

27.			3 51.7. 1		`````````````````````````````````	1. X	0	
	<u></u>							
								+
-								
,								
ř								
Γ								
_								
1								
4 1 1 1 1								
۹								
å								
6								
ç								
•								
L		<u>'a</u>	<i>i</i>			 		
A								
Trank and the second								
ц <u>у</u>								

Given the definitions of the operators R^* and K we substitute (3.30) into (3.18) to obtain

10000	
-	
	5
	_
_	
	_
<	
an in the second se	
	_

The validity of the Born approximation in the context of the quantum-mechanical scattering can be justified under the assumption of smallness of the potential or for high energies (frequencies) for a given potential.

Our inversion formula provides a direct reconstruction of the potential and the interatomic distance function for the linearised inverse problem. Indeed, applying theorem 1 specialised to dimension n=3 (see also § 3, remark 1) with $g \equiv V$ and using (4.4) we have

••	
<i>k</i>	
λ. •	
······································	
in	:
l _{e e}	
P.	
P. 4	
F.	
£	¥

R Burridge and G Beylkin

10

Both of these complications (as compared with the quantum-mechanical inverse scattering problem) have been resolved. The problem with point sources was reduced more or less routinely to the problem with incident plane waves. The solution in a variable background medium can be obtained in a systematic way if we restrict ourselves to

	<u>6</u>
۰. ۲	