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On double integrals over spheres
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Radon transform. In § 4 using results of § 3 we derive some formulae in inverse scattering
theory extending results of Devaney (1982a). We then discuss diffraction tomography
where the inversion formula of §3 yields a generalisation to what can be called
multifrequency diffraction tomography. The same inversion formula is also used in the
derlvatxon of migration algorlthms used in inverting seismic prospectmg data (Beylkm and
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where ¢ and # are defined as in the lemma. Using (3.10) in (3.8) and setting »=p(4 + ) we
have
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where the integral over & has been extended to the whole real axis and

sin® 2 g=[1—(& . )92, (3.15)

Inverse Fourier transform on the space R x §" ' x §"!

We can now formulate the following.

Theorem 1. Let g be a function on R" and § its Fourier transform. Then
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where W is an arbitrary function such that
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and where Q, = 27"*/I'(3n) is the surface area of the unit sphere in R".
Theorem 1 can be generalised further and leads to

Theorem 2. Let g be a function on R" and § its Fourier transform. Let A=A(y) and y=
4(y) be two positive functions on R". Then
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Using (2.11), (3.15), (3.19) and integrating over y, we have from (3.25)
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Changing the order of integration in (3.26) we arrive at
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where

1
g(»)= G dp g(p) exp(ip + y). (3.28)
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Formula (3. 27) can be interpreted as a superposition of band-limited reconstructions g,.
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Both of these complications (as compared with the quantum-mechanical inverse
scattering problem) have been resolved. The problem with point sources was reduced more
or less routinely to the problem with incident plane waves. The solution in a variable
background medium can be obtained in a systematic way if we restrict ourselves to




