Wavefront sets of solutions to linearised inverse scattering problems

Weita Chang[†], Philip Carrion[‡] and Gregory Beylkin[§] [†] Naval Underwater Systems Center, Code 3315, New London, CT 06320, USA

			-
_ ×			
• •			_
(L .		
·			
<u>}</u>			
-			
	1 -		
r -			
-			
<u>'=1</u>			
1			
5			
<u>.</u>			
<u>ул. </u>			
<u>.</u>			

In [10] precise answers to these questions are given using the notion of a generalised Radon transform [23]. In particular the answer is affirmative to the first question.

The purpose of this short paper is to reformulate the results of [10] in terms of wavefront sets. This provides a natural framework for formulating the inverse problem in general as one of determination of wavefront sets of unknown parameters of PDEs, which is a meaningful question to ask from the point of view of applications.

Such a formulation is also meaningful from the pure mathematical point of view. In other words, the wavefront set of a function seems to be a natural notion to use in <u>problems of reconstructing discontinuities</u>. Recall that the concent of the wavefront set is

	<u>,</u>	i <u></u>		
	I			
	•			

		1 41	-1.1	205
<u>6.</u>				
8				
				i i
· /				
m ⁴ -				
)
3				
λ				
	<i>4</i> -			
·				

686 W Chang et al

satisfying the eikonal equation

$$|\nabla_x \varphi(x,\xi)|^2 = n_0^2(x)$$
(3.2)

for $x \in X$, and $\xi \in \partial X$, such that

$$\varphi(x,\xi) \to 0$$
 as $x \to \xi$. (3.3)

We also assume that $\varphi(x, \xi)$ satisfies conditions (2.1), (2.2). For example if $n_0(x)$ is constant, say $n_0(x) = 1$ —the constant background model—we have

states that the locations of discontinuities together with their infinitesimal directions can be (at least partially) recovered. In fact the migration schemes described in [13-21] all have verices above for R metivated in simple seese (a.e. constant beckersund) by some bind

:			
: •			
	•		
	-		

Appendix

Here we state the basic facts about pseudodifferential operators. Let X be an open set of \mathbb{R}^{n} .

Definition (cf [7] vol. 1, p 13). The space of symbols of degree m, denoted by

 $S^m(X \times X \times R^n \setminus \{0\})$

consists of all complex-valued functions

 $C(x, y, \theta) \in C^{\infty}(X \times X \times \mathbb{R}^n \setminus \{0\})$

,

where

$$p = \nabla_x \Phi(x, x, \theta).$$

Since the determinant factor is non-zero and positive homogeneous degree 0 in p, we conclude that T is elliptic at (x_0, p_0) if

 $|C(x, x, \theta)| \ge d|\theta|^m$

for all (x, θ) in some conic neighbourhood of (x_0, θ_0) where

$$p_0 = \nabla_x \Phi(x_0, x_0, \theta_0)$$

and d is some positive constant. From this we get the following corollary.

Corollary A 2 Let Tf - a be as in proposition A 1 then

690 W Chang et al

- [15] French W S 1974 Two-dimensional and three-dimensional migration of model experiment reflection profiles Geophys. 39 265-77
- [16] Schneider W A 1978 Integral formulation for migration in two and three dimensions Geophys. 43 49-76
- [17] Stolt R M 1978 Migration by Fourier transform Geophys. 43 23-48
- [18] Cohen J K and Bleistein N 1979 Velocity inversion procedure for acoustic waves Geophys. 44 1077-85
- [19] Berkhout A J 1980 Seismic Migration (Amsterdam: Elsevier)
- [20] Gelchinsky B 1983 Ray Asymptotic Migration (Basic concepts), Extended Abstracts of 53rd SEG Meeting, Society of Exploration Geophysics, Las Vegas (SEG) pp 385-7
- [21] Carter J A and Fraser L N 1984 Accommodating lateral velocity changes in Kirchhoff migration by means of Fermat's principle Geophys. 49 46-53
- [22] Stolt R H and Weglein A B 1985 Migration and inversion of seismic data Geophys. 50 2458-72
- [23] Beylkin G 1984 The inversion problem and applications of the generalized Radon transform Commun. Pure Appl. Math. 37 579-99