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Abstract. A certain integral operator I", which arises in some linearised inverse scattering 
problems, is shown to be a pseudodifferential operator and its points of ellipticity are 
explicitly described. Consequently for the equation Tf=g,  one can find the relationship 
between the wavefront sets of f and g. From this viewpoint a class of algorithms called the 
migration schemes and used extensively in geophysics for imaging the Earth's interior can be 
understood clearly. 

1. Introduction 

The classical notion of a solution to an integral or differential equation refers to a function 
that satisfies the equation exactly or with a small discrepancy. The notion of a parametrix 
which is central in the theory of pseudodifferential and Fourier integral operators breaks 
with this tradition and allows the discrepancy to be any smooth function. This point of 
view has proved to be very fruitful in studying the properties of solutions of various partial 
differential and integral equations [ 1-91, and recently found its place in applications 

In problems of non-destructive evaluation, many practical questions can be adequately 
answered provided we can accurately reconstruct discontinuities in the parameters of the 
physical medium. Seismic exploration, medical applications, crack and void detection are 
examples of the variety of fields where these problems are of interest. 

In seismic exploration a class of various algorithms developed semiheuristically over 
the years (e.g. [ 14-22]) and aimed at recovering essentially the discontinuities of the wave 
velocity are called migration algorithms. These algorithms can be viewed as approximate 
solutions to a linearised inverse scattering problem. By 'an inverse scattering problem' we 
mean one that involves reconstructing the wave velocity (or other parameters) of the 
medium from measurements of the scattered field over a surface of a codimension one in 
space. More explicitly, a migration algorithm computes a function are of concern. 

(i) Are the discontinuities 

of g part of the discontinuities of the true wave veclocity? 
(ii) To what extent are the discontinuities of the true wave velocity preserved as the 

[ 10-131. 

discontinuities of g? 

0266-561 1/87/040683 + 08 $02.50 @ 1987 IOP Publishing Ltd 683 



684 W Chang et a1 

In [ lo]  precise answers to these questions are given using the notion of a generalised 
Radon transform [23]. In particular the answer is affirmative to the first question. 

The purpose of this short paper is to reformulate the results of [ l o ]  in terms of 
wavefront sets. This provides a natural framework for formulating the inverse problem in 
general as one of determination of wavefront sets of unknown parameters of PDES, which is 
a meaningful question to ask from the point of view of applications. 

Such a formulation is also meaningful from the pure mathematical point of view. In 
other words, the wavefront set of a function seems to be a natural notion to use in 
problems of reconstructing discontinuities. Recall that the 
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Proposition 2 .1 .  Define an integral operator T E'(X)  -+ D '(X) (where D ' is the space of 
distributions and E' is the space of distributions with compact support) by 

T i s  a pseudodifferential operator of degree 0 (modulo a smoothing operator) 

T i s  elliptic at (XO, PO) E T *X if and only if there exists t o  E aX such that 

N x o ,  t o )  f 0 (2.7) 

Here ( x , p )  are the local coordinates for the cotangent bundle T *X of W with p being the 
dual coordinates to x. This proposition will be proved in 0 4. As its corollary, we have 

Proposition 2 .2 .  For g = Tf in proposition 2.1 

Point (XO, PO) E W F ( f )  belongs to W F ( g )  if (2.7) is satisfied. (2.10) 

This follows immediately from corollary A.2 in the appendix. The motivation for 
proposition 2.1 is given in the next section. 

3. Linearised inverse scattering problems 

Consider R" as a physical medium where wave propagation is governed by a linear wave 
equation. Let Xc R" be an open set with a smooth boundary ax. We denote by n(x)  the 
true index of refraction in X. (Recall that the index of refraction is the reciprocal of the 
wave velocity). Let no(x) be an a priori known smooth positive function on X, regarded as 
a known part of the index of refraction, the so called background model. We assume that 
the medium is a small perturbation of the background model. Namely, we have on X, 

n2(x)  = ni(x) + f ( x )  (3.1) 

where we assume that f is bounded real and compactly supported in X and small so that 
the single scattering (or Born) approximation is valid. Our ultimate objective is to find the 
wavefront set of n(x),  or equivalently of f ( x ) .  We assume that the ray structure on X 
generated by the background model is well behaved so that there exists a unique positive 
travel-time function (or phase) 
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satisfying the eikonal equation 

lV,P(X, <>I = d x )  

for x E X ,  and ( E  aX, such that 
(3.2) 

P b ,  a - 0  as x- (. (3.3) 
We also assume that p(x, () satisfies conditions (2.1), (2.2). For example if no(x) is constant, 
say no(x) = 1-the constant background model-we have 

rp(x,4)=lx-tl 

and all the necessary conditions are satisfied if X is convex. 
For variable background model p(x, () is the travel time from x to ( along a ray in this 

model. We transmit a pure impulse S(t), the delta function of time t, from the fixed source 
location r]  E ax and measure the scattered field for all time along the surface ax. (Recall 
that the total field is the sum of the incident field due to the background model and the 
scattered field. If one 
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states that the locations of discontinuities together with their infinitesimal directions can be 
(at 
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Appendix 

Here we state the basic facts about pseudodifferential operators. Let X be an open set of 
R". 

Dejnition (cf(71 vol. 1 , p  13). The space of symbols of degree m, denoted by 

Sm(XXXXR"{O})  

c(x ,  y ,  e )  E cyx x x x R~\{o})  

consists of all complex-valued functions 

such that for each compact set K c X x X, and multi-indices a, p, y, there exists a constant 
Ma,8,y(K) such that 

iG@Z(x,v, e)i <Ma,p,y(K)(1+ isi)m-tyl 
for all (x, y )  E K and 8 E R"\{O}. In some applications, the inequality is uniformly satisfied 
only for 181 > 6, where 6 is a positive constant. The essential part of the theory does not 
undergo any changes in such a case. 

For the remainder, let C E Sm (X x X x  @"\\IO}) be fixed and D be a suitably small 
open set of X x X x (R"\{O}) containing supp C. We assume that there exists a function @ 
satisfying the following conditions (A. l)-(A.6), 

WX, Y ,  e )  E CV),  (A. 1) 

@ is real, positive homogeneous of degree one in 8 that is, 

W , Y ,  w = w x , y ,  e )  l > O  

Set A = {(x, y ,  8 )  E D, V8@ = 0) .  

Then A = {(x, x, e )  E D }  

V,@ # 0 Vy@ # 0 on A 

V,@ = - VY@ on A 

det (& ) # 0 on A. 

If v,@(x, X, e) = V,@(X, X, e'), (x, X, e )  E D, (x, X, 8 ' )  E D, then e= 8'. 

From this we get the following proposition. 

Proposition A.l (cf (71 vol. 2, p 463 remark 6.1). The Fourier integral operator 
T: E '(X) -+ D '(X) defined by 

( m ( x ) =  J exp(iwx, y ,  e))c(x,  y ,  e ) f m  dy d e  f E E ' W )  

is in fact a pseudodifferential operator (modulo a smoothing operator). Its principal symbol 
at (x ,p)  E X x R"\{O} = T * ( X )  is given (up to a positive constant) by 
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where 

p =  Vx@(x,  x, 8). 
Since the determinant factor is non-zero and positive homogeneous degree 0 in p ,  we 
conclude that T i s  elliptic at (xo,po) if 

IC(X, X ,  s)i w i e r  
for all (x, 8) in some conic neighbourhood of (xo,  8,) where 

Po = Vx@(XO, xo, 80) 

and d is some positive constant. From this we get the following corollary. 

Corollary A .  2. Let Tf = g be as in proposition A. 1 ,  then 

6) w m  c W F ( f  1 

b o ,  Po) E W W )  

if I C(X,  X, 8)l> dl 81" 

(ii) Let 

Po = V,@.(xo, xo, 80) 

for all (x ,  8 )  

in some conic neighbourhood of (xo, eo), where d is a positive constant, then we have 

(xo, Po) E w m ) .  
Statement (i) follows from the pseudo-local property of T ( [ 7 ] ,  vol. 1, theorem 2.2) and 

(ii) follows from the micro-local regularity for an elliptic operator ( [ 7 ] ,  vol 2, proposition 
6.10). 

We note that for our main results (propositions 2.1, 2.2), we use the case m=O for 
proposition A. 1 and corollary A.2. 
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