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A class of fast algorithms is introduced for the evaluation of discrete sums
that utilizes projections on a multiresolution analysis. The discrete sums un-
der consideration arise, for example, in the study of physical systems by means
of particle simulations requiring long-range potentials. These include gravi-
tational and electrostatic models, plasma physics, atmospheric physics, and
vortex methods in fluid dynamics. These numerical models of particle inter-
actions require the application of dense matrices which, done directly, requires
O(N?) arithmetic operations. The algorithms we develop accomplish this task
to within accuracy € in O(N) arithmetic operations.

There are two types of algorithms used today for the fast computation of
discrete sums, namely, the Method of Local Corrections and the Fast Multipole
Method. Our approach is related to both, but has its own unique features. We
describe implementations in one and two dimensions, and present theoretical
foundations for algorithms in higher dimensions.

In our approach to discrete summation problems, we construct explicit
representations of singular operators on subspaces of the multiresolution anal-
ysis. These representations provide a definition for the regularization of such
operators, as well as a practical algorithm for their computation. We present a
new multiresolution approach to the regularization of singular operators, and
show that our method coincides with the classical method, where the classical
method is applicable.
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Chapter 1

Introduction

1.1 Introductory Remarks

The study of physical systems by means of particle simulations is an important
computational tool in many fields. Examples include plasma physics, atmo-
spheric physics, N-body gravitational problems, and vortex methods in fluid
dynamics. In most of these particle models the evaluation of discrete sums
describing the pairwise interactions between particles occupies a central role,
and is often the most expensive part of the computation. Discrete sums may
also be encountered in the evaluation of integral equations obtained in the so-
lution of boundary value problems. In any event, numerical models require the
application of dense matrices which, done directly, requires an amount of work
proportional to N? for an N particle system (or N point discretization). To
overcome this computational hurdle there is a need for fast O(/N) algorithms.

In this thesis, we introduce a class of fast algorithms for the computation
of discrete sums using projections on a multiresolution analysis. (A br ft

dhla



As a special case of (1.1) we consider the sums

9(@m) = > K(@m — zn) f(zn), 1<m<N (1.2)

N

3
—-

3
3

where the N sampling locations coincide with the positions of the N particles.
Indeed, there is no loss of generality in taking (1.2) as our model problem, and
this we do from now on. The particle locations {x, }_, are points in R%, where



In our approach to discrete summation problems, we construct explicit
representat



for some positive 0. It follows from (1.7) that |Kyp(z,y)| decays rapidly as
|z — y| increases. Therefore, this singular part of the kernel influences only the
short range, or local interactions, and is represented by a banded matrix which
can be applied to a vector in O(N) operations.

1.3 AB



Implicit in the FMM is the simple splitting K = Ky p + Kgp , where

_ 0, lz—y[ <6 _ ) Kl@-y), [z—y[<0
KLF‘{K(x—w, ooyl >s M KHF—{ 0, |r-yl>0

The low frequency part is applied by a clever use of multipole expansions in a
divide and conquer strategy, taking advantage of the smoothness of the kernel
on regions removed from the origin to truncate the expansions after a few terms.
The high frequency part is applied directly. Despite its apparent simplicity,
the algorithm is not so straightforward to implement. The explicit form of
the multipole expansions and translation operators, which are responsible for
shifting the expansions from one box center to another, must be worked out
anew for each new kernel. However, when properly implemented, the FMM
provides a very efficient O (V) algorithm.

The Method of Local Corrections was introduced in [1] as a vortex method
for solving problems in fluid mechanics, though the main ideas are certainly
relevant in a more general context. This method is designed to approximate
the velocity field due to a distribution of “vortex blobs” in a fluid, and to eval-
uate this field at the center of each blob. A vortex blob is a radially symmetric
function, usually with compact support, that approximates a point vortex. In
[1] it is observed that “...the difference between the velocity field due to a point
vortex and a vortex blob located at the same point in space becomes very small
as one moves away from the center of the vortices.” (This statement should
be compared to the error estimate (1.8).) The approximate velocity is first
obtained on an equispaced grid via a fast Poisson solver (FFT), and then in-
terpolated to the centers of the vortices. The approximation is then corrected
locally, for all vortices that lie in close proximity to other vortices. The interpo-
lation is accomplished by the use of a complex-valued interpolating polynomial,
made possible by the fact that the x— and y— components of velocity are the
real and imaginary parts of a harmonic function. This is a special feature of
vortex methods, and is not likely to generalize to other applications. The cor-
rection step in this method is essentially equivalent to (1.7), and the splitting
of the kernel is achieved by means analogous to that described in Section 1.2.
However, in approximating the velocity field, a smoothed version of the original
operator is not constructed, and a finite difference method is employed instead.

In [11], a class of algorithms for particle simulations involving Poisson’s
equation is developed. These algorithms are named PPPM by the authors,
which stands for “particle-particle, particle-mesh.” The name refers to the by
now familiar splitting of the summation into low and high frequency contri-
butions. The low frequency part is evaluated on an equispaced grid, or mesh.
The values assigned to the mesh points are obtained from the charges on the
particles by use of a “chargeisp






Chapter 2

Multiresolution Analysis

2.1 Definition and Basic Properties

We first make some preliminary comments. Throughout this thesis, we use the
notation f to refer to the Fourier transform of a function f,

for= [ f@de, @) =g [ @ de.

—0o0

for a function f € L?>(R%). We use (-,-) to refer to the usual inner product on
L*(RY),
(f.9)= [ f@)g(a) da.

A superscript and a subscript on a function will denote, respectively, a dilation

and a translation, _ _ .
@) =279"f27z — k),

where j € Z and k € Z%. This will sometit B



In what follows, we make repeated use of Poisson’s summation formula,
S (k)R =3 f(E+20m). (2.1)
k=—00 l=—o00

There exist many proofs of this well-known result (see e.g. [18] or [22]).

The following definition is by now standard, and is borrowed from [20,
p-21].

Definition 2.1.1 A multiresolution approzimation of L*(R



The









Proof: The moments of ® are given in terms of the Fourier transform by the
formula

/ T d(x) dr = (=)™ (0)

—0o0

where @Em) denotes the mth derivative of ®. From (2.15) it follows that ®(0) =
1 since ¢(0) = 1. By differentiating both sides of (2.16) we obtain

amee) = 3 ()8 e

n=0

When & = 0, we have

o™ (0) = > <m> B (0) ME™ (0) . (2.20)
Differentiating (2.18), we obtain

MM



In order to compute the moments of the scaling function, it is not neces-

sary to evaluate the defining integral,

P, = /oo 2™ ¢(x) dx .

—0o0

Instead, we have the following recursive formula

1 & (m
Hm = 2m_12<n>1/”/'bm_n’ m > 1

where

I"hy.

Unp

1
=

(2.22)

The numbers {v,,} are the (normalized) moments of the sequence {h;}, and are

easily computed when {h;} is of finite length.

The formula (2.22) is well-known and is derived as follows. Using the

two-scale difference equation (2.8), we have

J /xmgb(x) dx
— \/izhl/x%(zx—l) dz

-2

T+
2

)m é(z) dz

- L E ()

= om z Unlm—n ,
2m =\ n

from which (2.22) easily W A
oW



Thus, the two-scale difference equation for & may be expressed in terms of the
variable = as

ﬂ@zégmﬂ@wwm. (2.25)

Setting z = n, n € Z we have
1
®(n) = 5 > a,®(2n —m).

The interpolating property (2.14) implies that as, = 20,9, where ¢ denotes
the Kronecker delta. Using (2.24) it is easy to show that a_,, = a,,, and we
use these observations to write

B(z) = B(22) + % 5 o1 [0027 — 2m+1) + 025~ 142m)] . (226)

If ® is compactly supported, as it must be if ¢ has compact support, then we
understand that only finitely many of the coefficients in (2.26) are non-zero.

2.1.4 Examples

Perhaps the simplest example of an MRA is one whose elements are piece-
wise constant on dyadic intervals. The scaling function for this MRA is the
characteristic function of the interval [0, 1),

1, 0<z<1
o) = { 0, otherwise. (2.27)

1S

Be) = [ edn= -

_ (&/f/; 1) <ezf/22 + 1)
= B(£/2)mo(£/2) -

From this expression, we can read off the trigonometric polynomial my, i.e.

1+e

which implies that hg = h; = 1/4/2, and h; = 0 otherwise. Furthermore, from
the explicit form of mg(&), we see that this function has a single zero at £ = 7.

14



The two-scale difference equation satisfied by (2.27) is

¢(z) = ¢(22) + ¢(22 — 1),
The autocorrelation of (2.27) is

14z, -1<z<0
S(z)=< 1—z, 0<z<l1
0, otherwise.

It is easily verified that

o o0
/ O(z)der =1, / z®(z)dr =0.
—0oQ0 —0o0

Example(1) is the lowest order member of both families of scaling func-
tions mentioned in this thesis, namely the central B-splines and the orthonor-
mal scaling functions with compact support constructed by Daubechies (see [7]
or [8]). Spline spaces will be described in more detail in Section 2.4. Daubechies
scaling functions satisfy the two-scale difference equation

2M -1 2M -1

o(x) =v2 Y mo(2x—1),  where > hI=1.
=0 =0

This scaling function provides an orthonormal basis for the subspaces of an
MRA with M vanishing moments, for M = 1,2,... , where M is the multiplic-
ity of the zero at £ = 7 in (2



These scaling functions possess good approximation properties, but are
difficult to evaluate pointw



for0<m<M-—1.

Due to our assumption of compact support or exponential decay at infinity,
the numbers p,, are well-defined for every integer m > 0. Before giving the
proof of the proposition, we state and prove a series of lemmas.

Lemma 2.2.1 If ¢(x) is compactly supported or satisfies (2.31), then for each
non-negative integer m there exists a constant C,, such that

o0

> |z — k|| — k)| < Cn (2.33)

k=—o0

for every real x, and the sum converges uniformly.

Proof: First assume that ¢(x) is compactly supported. Now

o0

N
> |z kMgl — k)| = lim 3 |z —k["[g(z — k)],
k=—N

k=—o0

provided that this limit exists. If the limit exists, then the limit function must
be 1-periodic, so it is sufficient to consider 0 < z < 1. Let [a, b] be the smallest
closed interval that contains the support of ¢(x). Then ¢p(x—k) =0ifz—k > b
or z — k < a, so it follows that

N k1
lim S ="l B = 3 o — ko — ).
k=—N k=Fko
where kg = —|b|, k1 = —|a], and |-| denotes the greatest integer less than

or equal to (-). Thus the sequence of partial sums converges for each z, and
as the sum involves only a finite number of terms it converges uniformly. For
0 <z <1, wehave |k| < |z — k| <|k|+1, so that

kl kl
Y.z —kMd(z — k) < gl D 1+ [E)™, (2.34)
k=ko k=ko

where ||@||lc = sup|d(z)],a < x < b. It follows that the sum is uniformly
bounded by the constant on the right-hand side of (2.34).

Next assume that ¢(z) has exponential decay at infinity, i.e. |p(x)| <
Ae @l for some positive constants A and . Now

o0

N
> o= o — k) = lim 3" |z — k"¢ — k)],
k=—N

k=—o00

17



provided that this limit exists, and as before it is sufficient to consider 0 < z <
1. Then |k| < |z — k| < |k| + 1 implies that

[z — k™ [¢(a — k)| < Alx — k["e ™" F < AL+ [k|)"e M.
Thus,
N N
> | — k"¢ — k)| <A 3T (1+[k])mem (2.35)
k=—N

k=—N

and as N — oo the sequence of partial sums on the right converges for any
non-negative integer m. It follows that the sequence of partial sums on the
left-hand side of (2.35) converges uniformly for each z, and the limit function
is uniformly bounded by the constant A Y% (1 + |k|)™e~®*l, O

Lemma 2.2.2 If ¢(z) is compactly supported or satisfies (2.31), then z™¢(z)
is in L} (R) for each non-negative integer m, and we have the estimate

/Z 2|™|6(z)| dz < Ci, (2.36)



where



Now assume that dA)(”) (2{m) = 0 for all non-zero integers [ and for 0 < n <
m — 1. Differentiate (2



and in general we have

LCEIEDS



If f € L*(R), then Y |s)|? < oco. Since the basis ¢}, k € Z is orthonormal, it
follows that

1P 1P =37 Ikl

We may also allow f to be a generalized function [3]. In this context,
we take i,k € Z to be the test functions, and V; to be the space of test
functions. Then f is a continuous linear functional that assigns a unique real
number (f,#}) to each ¢ € V;. If f i



We point out that in the inequality (2.46), in all practical cases the scale
parameter j satisfies 7 < 0. Before proving the proposition we state and prove
a combinatorial lemma.

Lemma 2.2.5 Let {a,}, {b.}, and {c,} be arbitrary sequences of length M,
then we have

z_ aanln<”+m> I cmz< >an (24D

m=0

Proof: For convenience denote the left-hand side of (2.47) by Lh.s. Expanding
the summation over n we have

—14+m

0+m
Lh.s. = Qo Z ( ) mCO+m+ “tapm-1 Z ( 1 )bmcM—l—f—m-

Now regroup these terms, factoring out in turn ¢y, ¢i, etc. Since ¢y appears
only in the first term, ¢; appears only in the first and second terms, etc., we

obtain
Lhs. = ) aobo b + Daobs + ) awb
.n.s. = ¢y ano C1 0a01 1CL10

4ot M=1) b+ (M7 Nyt (M1 b
Cpm—1 0 apOpr—1 1 a10pr—2 M—1 apr—109 ¢ -

This can evidently be written in compact notation as

Lhs. = Zcmz< )am m-n s

m=0

which verifies (2.47). 0
Proof of the Proposition: We first obtain an expression for the coeffi-

cient si in terms of the derivatives of f. Expanding f in a Taylor series about
(27k) we have

]V[Zlf 27k) x_ij)m+ f(]\j\;('gk)(l‘—2jk)M
m=0 .

where & lies between z and (27k). Using this expression we have

5%229/2/16 ¢(277z — k) dzx

(m) (93 ) _ _ o
9-1/2 Z (2 k)2m’ /(Q_Jx —k)"p(277z — k)dr + 27/2£fc

M—1 p(m) 9J
_ o N o ( k)
= 2723 -

m=0

QMJM + 2]/2

23






so that (2.52) reduces to

(Pf)(x) — Ej(x) = f(=).

This proves (2.45).
Now let us examine the error terms. Clearly

1B} (2)] < Cosup lei
where we have used Lemma(2.2.1). Now consider
< 2 / Ci '|2 I~ kM |6(27 — k)| do
[ ()

1Y)

; (M’(f)l

< oM+, sup L
- eeriz)  M!

§elj(z)

where we have used Lemma(2.2.2). Thus we have

. (M)
@) < 200y sup O (2.53)
gerjx)  M!
Similarly we have
- ()|
E?(z)| < 2MIC'Cyy sup 2@
B < 2vccy s 10
where C' = M1 (|| /m!)2™ . This proves (2.46). O

2.3 Multiresolution Approximation of Kernels

2.3.1 Kernels on Vj

In general, a kernel on V} is an expression of the form

S S b @),

m=—00 N=—00

where the function ¢(x) € Vj is the scaling function. In this thesis, we approx-
imate kernels of the form K(z,y) = K(x —y), and in this case the coefficients
satisfy .

Bon =t . (2.54)

25



Therefore, for our purposes it is sufficient to view a kernel as an expression of
the form . o
Ti(z,y)= Y D tmafn(@)on(),
m=—o0 N=—00

where the sequence {t/ } belongs to [*(Z). Thus, to build an approximation to
a given kernel K (z —y) on the subspace V}, it is necessary only to compute the
appropriate coefficients. Conversely, the kernel 7; is completely determined
once the coefficients {t/} are known.

We note that (2.54) does not imply that Tj(z,y) = Tj(z — y), i.e. 1} is
not a convolutional kernel. However, we do have the identity

Tz + 2k, y + 2°k) = Tj(2,y) ,
which shows that T} is a “block convolution”. To state this another way, T} is

a periodic function of period 2/ al dHiftz volcesharut 7 hgéi, eghfi f off @ de ff e thd f idf



However, we also have

(REPN@) = [ Tyay)f @) dy

o

= [ S thadh@)8hv)f ) dy

= Y @) ¥t [ 60 W) dy
= 3 G Y s

m=—0Q n—=—0oo

Equating these two expressions, we obtain

thn = (K61,60) = [[ K@ =)ol @)diw) dydz.  (255)

Using a change of variables and reversing the order of integration we can rewrite
(2.55) as

t = /_ Y K(@)®(2 7z —n)d, (2.56)

where ® is the autocorrelation introduced in Section 2.1.3. Note also thed fz



Suppose that K s at least M times c



Now use Proposition(2.2.1) to rewrite (2.62) as

M1 pe(m) (g —
Tyay) = Be,y) = ¥ 2@ =¥ mwz( ) ot

|
m=0 m.:

= K-y

having also used Lemma(2.1.1), and Proposition(2.1.1). This proves (2.58).
Now consider the error terms. Taking m = M in (5.39), we have

. _ KM)(e _
sup el _,| < 2M*Vic,,  sup M
(kJ)EKXL (§mER;(z,y) M!
Using this inequality, we have
Ej(z,y)|
< sup el_ l|<2\¢21m— )<Z|¢27 —l)
(kl)eXx L

. KO ( M
+2M7 sup —‘ Z ( )

(&mER;(z,y) =

X <; 1279 — kM p(27z — k)l) (Z 277y — 1" [p(277y — l)\)
< oM gup w(OQJFZ( )CM n n>

(Em)ER; (2,) M!

which proves (2.59). The constants are those provided by Lemma(2.2.1). O

2.3.3 Trigonometric Expansion of a Kernel

The following theorem provides an efficient method for computing the value
of Tj(x,y) at a given point (z,y). As stated above (Section 2.3.1), the kernel
Tj(z,y) is not a function of the difference (z — y) alone, a fact which makes it
difficult to tabulate. However, it turns out that 7; may be represented by a
sum of functions that depend only on (z — y), and being functions of a single
variable, are easily tabulated. The proof of this exploits the fact that 7} is
periodic on a fixed diagonal x — y = constant.

The resulting series expansion (2.64) converges rapidly, and in our im-
plementation we retain terms only for [n| < 3. This high rate of convergence
follows from the rapid decay of the Fourier transform of the scaling function.

This result does not require the scaling function ¢ to belong to an or-
thonormal system.

29



Theorem 2.3.1 Let ¢(z) be a scaling function for the subspace Vi, which is
continuous and has a piecewise continuous derivative. Let T;(x,y) be a kernel
on V;, which has the form

Tiwy) = 3 3t dh@)d(y), (2.63)

m=—0o0 n=—0o0

where ¥ |t]|? < co. Then we have the identity,

o0

2T (203, 27y) = Y Mm@t (z — ), (2.64)
where { oo
Ih(z) = o= [ e (e — nm)da(€) de, (2.65)
t(€) = i t] ke (2.66)
and X X _
B,(6) = H(E — nm)D(E +nm). (2.67)

Furthermore, for each (z,y) € R?, the right-hand-side of (2.64) converges uni-
formly to 29T;(27z, 2y).

Example: In order to illustrate the decay of the functions &, (£), assume
that ¢(x) is the central B-spline of degree (2m — 1). Then we have

2m 2m
. B sin (% + ”7”) sin (% — ”7”)
(I)n (5) - [3 nw I3 nw
st 57 2
which obviously decays rapidly as |n| — oo. N

Proof of the Theorem: B, gf¢ A cC y(z C g C i

= £ nl






Alternatively, we can write

VT, 2) = - [ e ae
+ i = [T e (e — nmRe (B, (€) dg. (273)

When the functions &, (£) are real, this reduces to

DT, 9y) = 5 [ i) g6 de
+ i cos[nm(x + y)] - % /oo e"E@N (€ — nm) D, (€) dE. (2.74)
n=1 -

2.4 Spline MRAs

An important class of multiresolution analyses use splines as a starting point
(see e.g. [5] or [20]). In this thesis, we restrict our attention to the central B-
splines of odd degree, though splines of even degree could also be used. Integer
translates of these functions form a Riesz basis.

We denote by M~V (z) the spline that is piecewise polynomial of de-
gree (M — 1), for M = 2,4,.... By way of example, the lowest order case,
corresponding to M = 2, is the well-known “hat function”,

1—-1z|, || <1
50)(3;):{ |(l M>1. (2.75)

These functions are compactly si1 gdfh d,

f

AdiB



where 3(0)(z) is the characteristic function of the interval [—1/2,1/2). (Here
we allow m to be any non-negative integer.) We can also write

1/2

B™ () = Bz —t)dt, m>1.

—-1/2

Using the fact that 3™ is an (m + 1)-fold convolut



2.4.1 The Battle-Lemarié Scaling Function

The scaling function for the orthonormal system in a spline MRA is known
as the Battle-Lemarié scaling function (see e.g. [8, pp.146-152]). This scaling
function is the result of applying the orthogonalization procedure (2.7) to the
B-spline. The Battle-Lemarié function is thus defined in the Fourier domain
by the equation M

R QEY:

d@ S%*%L— o YA TT “—-ry N q£® ~ 1 5 ng q; TmLF‘ ~ T T AD






Using Poisson’s summation formula, the relationship (2



Let M be an even, positive integer and let (M — 1) be the degree of the
B-spline 3. Construct two sets of numbers {g,, }2=} and {Q,,}?;* according

to the formulae

Z (m) (_1)HQm—n,un = { (1), Z i 8 for 0 S m S M -1 (297)
n=0 n )

m ‘m n . 1’ m=0
Z()(—l)Qm_nMn—{ s for0<m<2M-



where

. (M)
|E;(z)| < 2™IC sup w
ten@ M

The constant C' depends on 3 but not on f.

(2.103)

Proof: Let zy be an arbitrary real number. Expand f in a Taylor series
about z, to obtain the expression for the mth derivative,

M—1-m p(n+m) (M)
f(m) (3:) _ Z f (ﬂCo) (x - iUo)n + f M[('fm) (33 o xO)M,

|
n—0 n.

where 0 < m < M — 1, and &, lies between = and ;. Set z = 27k to obtain

£ (27k) = M_zl_m FOHm (o) f (M;f!m,k)

n' (2]]€ — .’L‘o)n +
n=0 .

(2]]17 — .’L'())M
where &, lies between z, and (27k) for each m. Now use this expression
together with (2.99) to write
(Pif)(xo) = 277723 s} B(277 20 — k)
k

J .

= ; B2z — Z_

= Zﬂ(Q_jxo— S q—m{MZlmw@jk_%)n

—om! | = n!
NI A(f.m’“)@% |
M

) 2(m+n)j (_1)n

m=0 n=0
X > (277mo — k)" B(279m0 — k) + Ej(o) (2.104)
k
where we have put
M—1 () '
Ej(x) % o ! gm’“) 27k — 2)MB(2 9z — k). (2.105)
m=0 Tk

Continuing from (2.104), and using the identity (2.80), we have

M-1 M—-1-m f(n—|—m) (IO)

(Pif)eo) = Byfoo) = X am 2

i M n+m f(n—l—m) Zo m+mn)j n
= Sy (M I ey,
m=0

— m (n+m)!

2
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Now use (2.47) to transform the right-hand side of this equation, thus obtaining

Bf)an) ~ Bylan) = 3 L S5 (") 1y

m=0

= f(xo)a

where we have used (2.97). This proves (2.102).

Finally, we observe that, since 8 is compactly supported, there is a con-
stant C'3; such that

Sz — kM|8( — k)| < O,

by Lemma(2.2.1). Thus, from (2.105) we have

|Ej(z)] < (Z |qm|2mﬂ> 2Mﬂ';|2—jx —kM|p(27 — )|M

m=0 m!
- FAD )]
< 2MIC'Cy, sup |7,
Yen@ M
where C' = Y"M_1 2™(|q,,| /m!). This verifies (2.103) . 0

Proposition 2.4.2 Let § be the central B-spline of degree (M — 1), where M
is an even positive integer. Let T; = P;KP; denote the projection of a kernel
K onto the subspace V;, given by

_Z _Zt BB () (2.106)

where the coefficients are given by (2.100). For a given point (z,y) € R?,
let Rj(z,y) be the rectangle formed by the union of the supports of all basis
functions which are non-zero at (x,y). Thus, if

= Usupp (), K={keZpi(z)+#0}

kex
and . _
=Usuwpp (8), L={l€Z|Fy) +#0}
lec
then

Rj(z,y) = Ij(z) X I;(y) .-
Suppose that K is at least M times continuously differentiable on R;(z,y).

Then we have
Ti(z,y) = K(z —y) + Ej(z,y), (2.107)
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where

: |KM (¢ — )
|Ej(z,y)| <2MIC  sup 5
! (&mER; (z,y) (M)'

The constant C' depends on 3 but not on K.

(2.108)

The proof of this proposition is similar t



which follows from (2.92). Comparison of this expression with (2.81) shows
that

A D02

A(&) = [o(8)]
where ¢ is the Battle-Lemarié scaling function. Thus the correlation function
A is equal to the autocorrelation of the Battle-Lemarié scaling function almost

everywhere, which by Proposition(2.1.1) must have vanishing moments. Let
A, denote the mth moment of A. Then we have

1, m=0
Am_{O, m>0

for 0 <m <2M — 1, and as in Lemma(2.1.1) we have
m m n
Am = Z ( >(_1) Am-—nln -
n—0 \"

Since the moments of the B-spline {u,} are easy to compute, (use the recur-
sive formula in equation 2.22) w



Chapter 3

The Fast Summation Algorithm
in One Dimension

In this chapter we describe our approach for problems in one dimension. Our
approach in higher dimensions is similar. Indeed, to develop an algorithm in
two dimensions, the only additional machinery used is singular value decom-
position of the coefficient matrix, but this will be discussed in Chapter(4).

3.1 General Description

1. Our goal is to compute the numbers {g,,}, where

N
gm=ZK(acm—xn)fn, 1<m<N. (3.1)
N

We assume that the kernel K is singular on the line x —y = 0, i.e.
|[K(x —y)| 200 as (x—y)—0,

but is at least M times continuously differentiable on any region that does not
contain the line x = y. Moreover, we assume that there is a “bandwidth” B
such that the Mth derivative is uniformly bounded outside the band |z —y| <
B, ie.

[KM(z —y)| < C for |z —y| > B. (3.2)

2. We choose a le



As discussed in Chapter(2) this construction requires only the computation of
the coefficients {#/ }, given by

tZL:/OO K()®2 9z —n)de, neZ

—0o0

where ® is the autocorrelation of the scaling function ¢. This can be done ahead
of time and the coefficients {t} are then stored in memory. This portion of
the computation is part of the initialization.

3. Using Proposition(2.3.1) together with (3.2) we have the estimate
K(z —y) —Tj(z,y)| <e for |z—y|>2B, (3.4)

for any € > 0, provided that M and j < 0 have been chosen so that C(2M7/M!) <
€. (There is some abuse of notation here, since the constants C' and B are not
necessarily identical to the co



and

. N .
n=1

(3.9



small, and hence points (



2. The number of vanishing moments M corresponds to a B-spline of
degree (2m — 1). More precisely, we have M — 1 = 2m — 1, so that M must
be an even, positive integer. Once this parameter and the level of refinement
7 < 0 have been chosen, the projection of the kernel K is

=55 d @), 315)

where J = 277, and 3 denotes the B-spline of degree (2m —1). The coefficients
{ti} for |n| < (J — 1) are computed using the formula (2.100).
3. Note that, in anticipation ion



6. Having obtained the coefficients (3.18) we can now evaluate the ex-
pansion






Step Procedure Complexit






and then e



N ‘ TLF ‘ THF ‘ T'tot ‘ Tdir ‘ E2 Eoo
64 | 0.0036 | 0.0037 | 0.0073 | 0.0077 | 0.46860E-05 | 0.35852E-05
128 | 0.0066 | 0.0079 | 0.0145 | 0.0278 | 0.41383E-05 | 0.47034E-05
256 | 0.0138 | 0.0155 | 0.0293 | 0.1044 | 0.38780E-05 | 0.42643E-05
512 | 0.0264 | 0.0300 | 0.0564 | 0.4042 | 0.36356E-05 | 0.43642E-05
1024 | 0.0552 | 0.0591 | 0.1143 | 1.5946 | 0.33201E-05 | 0.33570E-05
2048 | 0.1089 | 0.1175 | 0.2264 | 6.3151 | 0.31335E-05 | 0.33471E-05
4096 | 0.2379 | 0.2351 | 0.4731 | 25.2104 | 0.33210E-05 | 0.31553E-05




‘ N ‘ TLF ‘ THF ‘ thot Tdir E2 Eoo ‘
64 | 0.0138 | 0.0130 | 0.0268 | 0.0086 | 0.50929E-14 | 0.26622E-14

128 | 0.0261 | 0.0260 | 0.0521 | 0.0318 | 0.23669E-14 | 0.16785E-14

256 | 0.0525 | 0.0477 | 0.1002 | 0.1244 | 0.43058E-14 | 0.18982E-14

512 | 0.1111 | 0.0925 | 0.2036 | 0.4910 | 0.85681E-14 | 0.43438E-14
1024 | 0.2344 | 0.1770 | 0.4114 | 2.0113 | 0.78821E-14 | 0.25543E-14
2048 | 0.5288 | 0.3593 | 0.8881 | 8.0242 | 0.91355E-14 | 0.27125E-14
4096 | 1.0738 | 0.7384 | 1.8122 | 32.1545 | 0.11375E-13 | 0.66191E-14

Table 3.3: Implementation in one dimension using B-splines of degree 11,

break-even at about 220 particles.

can then be computed with the standard FFT. In order to determine the co-
efficients {g,,}, we invert (3.31) to get

1N1

Z f] —27rzmj /N

Next substitute expression (3.29) for f; to get

1 N-— o N-1 -
Om = — Z —2mimj /N Z fn €2m]zn
N 7=0 n=0
N-—1 1 N—-1 -
— Z f - Z 6727r11(m/N7wn), (332)
n=0 N j=0
where f, = f(z,). Now we have
Z omij(m/N—zn) 1— e—27ri(m—Na:n)
— - 1 — e—27ri(m/N—wn)
= —2"™*sing x xN 85 x  xwhere sxx

X

X






Now, in order to find an explicit representation for Tj, we proceed as
follows. Assume that we have constructed 7; and 7},. Then we have

o o

= Y Y tadn(@)eh(y), (3.41)

m=—o0 nNn=—0oe

and
o0

Tjn(z,y)= 3 Z Ut (@) 857 (y) - (3.42)

m=—0o0 nNn=—0oC

In order to express 7}, in terms of the basis functions ¢/ ,n € Z in V;, we use
the two-scale difference equation (2.8) satisfied by the scaling function ¢(x),
which takes the general form

¢ (x) Z o] (x (3.43)

Using (3.43) in (3.42), we have

oo oo

Tjti(z,y) = Z Z

m=—0o0nN=—0o0



Viy. -y Vjgn. This is done as follows. Recall that (see equation (3.9)) the
coefficients {s]} that represent the particle distribution on V; are given by



Chapter 4

The Fast Summation Algorithm
in Higher Dimensions

In this chapter, we explain how to extend our one-dimensional scheme to higher
dimensions. The algorithm has been implemented in two dimensions, and we
give details of this and also present some numerical results. As mentioned
above, there is little here beyond the use of vector notation that is not com-
pletely analogous to the one-dimensional case, except for singular value decom-
position of the coefficient matrix (this matrix is defi






4.2 The Fast Summation Algorithm in Two
Dimensions

1. Our goal is to compute

N
g(xmv ym) =



2.3.3. Since we are using central B-splines as basis functions, the functions
®,,(§) are real. In this case, we can write

4T (2 x, 27y, 272, 274))

= Ioo(z,2") + 2 cos(nmw’)ou(z,2') +2 ) cos(mmw) oz, 2') y,2 g u