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Abstra
t. We introdu
e a new 
omputationally e�
ient algorithm

for 
onstru
ting near optimal rational approximations of large (one-

dimensional) data sets. In 
ontrast to wavelet-type approximations,

these new approximations are e�e
tively shift invariant. We note that

the 
omplexity of 
urrent algorithms for 
omputing near optimal ratio-

nal approximations prevents their use for large data sets.

In order to obtain a near optimal rational approximation of a large

data set, we �rst 
onstru
t its intermediate B-spline representation.

Then, by using a new rational approximation of B-splines, we arrive

at a suboptimal rational approximation of the data set. We then use a

re
ently developed fast and a

urate redu
tion algorithm for obtaining

a near optimal rational approximation



NEAR OPTIMAL RATIONAL APPROXIMATIONS OF LARGE DATA SETS 2

in 
ontrast to wavelet de
ompositions, rational fun
tions are 
losed under

translations and, thus, optimal rational approximations are shift invariant.

Indeed, shifting an optimal rational approximation yields the optimal ap-

proximation of the shifted fun
tion or data.

Our rational representations are optimal in the sense that, for a given

a

ura
y of approximation, the number of poles is minimal. We say that

the approximation is �near optimal� if, instead of the desired a

ura
y ǫ, our
algorithms yield a

ura
y ǫ′

, where ǫ′
is slightly smaller than ǫ. In su
h 
ase

the number of poles may not be minimal in the stri
t sense (we note that we

have an a posteriori 
he
k to identify su
h situation, if needed). We use the

term �suboptimal�, if we know that the number of poles de�nitely ex
eeds

the optimal number (for a given a

ura
y).

For fun
tions given analyti
ally or for fun
tions des
ribed by a relatively

small number of samples, there are several methods for obtaining their near

optimal rational approximations [5, 6, 7℄. For a large data set these methods

are impra
ti
al due to their 
omputational 
omplexity. On the other hand,


omputing a wavelet de
omposition of a large data set does not present a

di�
ulty sin
e its 
omputational 
ost is linear in the number of samples; we

use these fa
ts in our approa
h.

We �rst 
ompute a B-spline representation of the data, whi
h provides a

simple and e�
ient method for a transition to a suboptimal rational repre-

sentation. For this purpose, we 
onstru
t a new rational approximation of

B-splines, where the poles are arranged on a re
tangular grid aligned with

the lo
ation of spline knots. We then split the data into large segments, and


ompute suboptimal rational approximations for ea
h segment. Finally, we


ompute a near optimal rational approximation using a re
ently developed,

fast and a

urate algorithm in [10℄.

Although the example provided here is 
ompression of audio re
ordings,

the algorithm may be used to 
ompress and analyze other types of signals,

e.g., signals obtained by 
ontinuous, global seismi
 monitoring. In parti
ular,

we view 
ompression via near optimal rational approximations as the �rst

step in signal analysis sin
e the poles 
arry frequen
y and time information.

As shown in [6℄, poles of near optimal rational approximations 
on
entrate

near the singularities of fun
tions. For signals, this 
orresponds to lo
ations

of rapid 
hange, su
h as o

urring when a piano key is stru
k or at wave

arrivals in seismi
 re
ordings. The lo
ation of the poles also 
arries infor-

mation about lo
al frequen
y 
ontent of the signal in a manner similar to

wavelets, i.e., the logarithmi
 distan
e of these lo
ations from the real axis


orresponds to wavelet s
ales.

We start in Se
tion 2 by providing the ba
kground information on the

key existing algorithms that fa
ilitate the development of our new approa
h.

Next, in Se
tion 3, we 
onstru
t a rational approximation (with spe
ial prop-

erties) of a B-spline to be used in intermediate 
omputations. Then, in Se
-

tion 4, we des
ribe in detail the algorithm for 
onstru
ting near optimal
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Following [6℄, from (1) we obtain the rational representation

f(x) = −2Re




M∑

j=1

wj
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ǫ. In 
ontrast to standard algorithms, the 
on-eigenvalues (and 
on-

eigenve
tors) are 
omputed with high relative a

ura
y in O
(
M2M0

)

operations.

• Find all the roots inside the unit disk of the fun
tion

v(z) =
1

σM

M0∑

j=1

√
dj uj

1 − µjz
.

Note that there are exa
tly M roots νl of v(z) inside the unit disk

based on results from [3℄.

• Finally solve for the residuals rl of r(z) by solving the M × M linear

system

M∑

j=1

rj

1 − νjνk

=

M0∑

j=1

dj

1 − µjνk

.

Using this algorithm, we obtain ‖f −r‖ ≈ σM , whi
h provides a near optimal

representation of f(z) using only M pairs of 
onjugate-re
ipro
al poles, νl

and ν−1
l . The 
omputational 
omplexity of this algorithm is O

(
M2M0

)
,

where M is the number of resulting poles and M0 is the original number

of poles. Sin
e typi
ally M ≪ M0, this algorithm is e�e
tively linear in its

pra
ti
al use.

2.3. Spline representations. We use an intermediate representation via

B-splines as the �rst step towards 
omputing the (near) optimal rational

approximation. Although theoreti
ally we may use s
aling fun
tions of any

wavelet-type basis, the 
hoi
e of B-splines redu
es the 
omputational 
ost of

this intermediate step.

We re
all the de�nition of the mth
degree B-spline as

βm(x) = βm−1(x) ∗ β0(x),

with

β0(x) =

{
1, |x| ≤ 1

2

0, otherwise,

(see e.g., [8℄). For 
onvenien
e, we only use B-splines of odd degree. It is

easy to show that, in this 
ase, βm is a pie
ewise polynomial of degree m
with knots on the integers and supported on [− (m + 1) /2, (m + 1) /2]. To
represent periodi
 fun
tions, we use periodized versions of B-splines. Let us

introdu
e the 1-periodi
 fun
tion

am(ω) =
∑

j∈Z

|β̂m(ω + j)|2 =

m−1

2∑

l=− m−1
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Given a uniformly sampled 1-periodi
 fun
tion f , we seek the 
oe�
ients

αj su
h that

(7) f

(
k

2N

)
=

2N∑

j=0

αjβm(k − j), k = 0, . . . , 2N.

The algorithm in [4, 12℄ rapidly 
omputes the 
oe�
ients αj in (7) using

the Fast Fourier Transform (FFT). It performs the following steps:

• Set fk = f( k
2N

) and 
ompute, for k = 0, . . . , 2N ,

f̂k =

2N∑

n=0

fne
−2πi
2N+1

kn

using the FFT.

• Compute, for k = 0, . . . , 2N ,

α̂k =
f̂k

am( k
2N+1 )

.

• The B-spline 
oe�
ients are now obtained via the FFT as

αj =
1

2N + 1

2N∑

n=0

α̂ne
2πi

2N+1
jn, j = 0, . . . , 2N

This algorithm requires O(N log N) operations. The details may be found

in the appendix in [12℄.

3. Rational representation of B-splines

In this se
tion we 
onstru
t rational approximations of B-splines. In our


onstru
tion we for
e the real parts of the poles to be integers l ∈ Z, so that

the poles are aligned with the knots of the B-spline. As we explain below,

this redu
es the 
ost of intermediate 
omputations.

Spe
i�
ally, we are looking for a suboptimal rational approximation of the

form (5), with poles l ± iτk, so that

(8)

∣∣∣∣∣∣∣
βm(x) + 2

m+1

2∑

l=− m+1

2

R∑

k=1

uk,l(x − l) − vk,lτk

(x − l)2 + τ2
k

∣∣∣∣∣∣∣
≤ ǫ,

where the number of rows of poles, R, will be 
hosen later. We note that

the 
onstraint on the real part of the poles arranges them on a re
tangular

grid (see Figure 2).

We start by 
omputing a near optimal rational approximation of a B-spline

following the approa
h in [6℄. For a given m, we evaluate β̂ at a su�
ient

number of samples; spe
i�
ally for m = 7 we have

(9) hn = β̂m

( n

32

)
, n = 0, 1, . . . , 800,
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where

(10) β̂m(ξ) =

(
sin πξ

πξ

)m+1

,

and use the algorithm in Se
tion 2.1 to 
onstru
t a near optimal rational

approximation.

An example of a near optimal rational approximation of a B-spline of

degree m = 3 may be found in [6℄. As observed in that paper, the poles


on
entrate towards the lo
ations of the knots of the B-spline sin
e its third

derivative is dis
ontinuous at these points. In our appli
ation we would like

to use a higher degree B-spline to lessen the impa
t of dis
ontinuities and

obtain fewer poles. In Figure 1 we present the results for a near optimal

approximation of a 7th degree B-spline using the same approa
h as in [6℄.

Sin
e the poles, tj ± isj , appear in 
omplex 
onjugate pairs, in Figure 1 we

display (on a log10 s
ale) only those with negative imaginary part.

We then seek a suboptimal rational representation of β(x) with poles in

the lo
ations indi
ated in (8) and use the near optimal approximation to

sele
t the parameters τk in (8). Taking into a

ount that the poles 
loser to

the real line are responsible for the high frequen
y 
ontent of the represen-

tation, whereas those furthest away 
apture the lower frequen
y 
ontent, we

limit the range for the imaginary parts of our suboptimal poles by using the


orresponding maximum, s+, and minimum, s−, of the near optimal poles.

We sele
t three rows of poles, i.e., R = 3 in (8), by 
hoosing imaginary parts

τ1 = s+, τ3 = s−
, and

τ2 = e
1

2
(log τ1+log τ3).

The real part for all of these poles are at lo
ations l, where l = −m+1
2 , . . . , m+1

2
(re
all that m is odd). The 
hoi
e of three rows of poles is based on the de-

gree of the B-spline and our a

ura
y requirements (see Figure 2(b)) and

may be di�erent in other appli
ations.

On
e the lo
ation of poles is �xed, the
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the optimization pa
kage CVX [9℄. The resulting absolute error is shown in

Figure 2(b).
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4. Near optimal rational approximations

We now brie�y des
ribe the key steps
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ompute the B-spline 
oe�
ients for ea
h se
tion of the signal. On
e

the B-spline 
oe�
ients for ea
h se
tion are found, by adding 
om-
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the support of both segments, we preserve the overall a

ura
y of

the merged approximation. In our experiments, we redu
e the set of

poles



NEAR OPTIMAL RATIONAL APPROXIMATIONS OF LARGE DATA SETS 13

parts,

fk = f+
k + f−

k + f local
k =

∑

xk−tj≥αs

(
uj + ivj

xk − tj − isj

+
uj − ivj

xk − tj + isj

)

+
∑

tj−xk≥αs

(
uj + ivj

xk − tj − isj

+
uj − ivj

xk − tj + isj

)
(16)

+
∑

|xk−tj |<αs

(
uj + ivj

xk − tj − isj

+
uj − ivj

xk − tj + isj

)
,

and evaluate f+
k , f−

k and f local
k separately, where that of f local

k pro
eeds

dire
tly. The 
ondition on the fa
tor α is de
ribed below (α = 5 is a typi
al


hoi
e). It remains to des
ribe an algorithm for evaluating f+
k sin
e f−

k is


omputed in a similar manner.

We have

f+
k =

∑

xk−tj≥αs

(
uj + ivj

xk − tj − isj

+
uj − ivj

xk − tj + isj

)

= 2
∑

xk−tj≥αs

ˆ ∞

−∞
e−ey(xk−tj)+y (uj cos(eysj) − vj sin(eysj)) dy.(17)

The e�e
tive range of integration in (17) is �nite due to the exponential (y →
−∞) and super-exponential (y → ∞) de
ay of the integrand. Our 
hoi
e

of the fa
tor α prevents an ex
essive os
illatory behavior of the integrand

within that range. In order to obtain an exponential approximation of the

form

(18) f+
k =

∑

tj≤xk

L∑

l=1

λl,je
−µl(xk−tj), αs ≤ xk − tj ≤ T, Re(µl) > 0,

(where T is su�
iently large to a

ommodate a given segment of the signal),

we may now pro
eed as in [5, 7℄. Indeed, we dis
retize the integral in (17) to

any desired pre
ision and use an appropriate algorithm to redu
e the number

of terms.

In (18) we may swit
h the order of summation and, as a result, 
onstru
t

a re
ursion (see [13, 5℄). Denoting

qk,l =
∑

tj≤xk

λl,je
−µl(xk−tj),

we obtain

qk+1,l =
∑

tj≤xk+1

λl,je
−µl(xk+1−tj)

= e−µl(xk+1−xk)qk,l +
∑

xk<tj≤xk+1

λl,je
−µl(xk+1−tj).

This re
ursion leads to an O(L · K) + O(L · M) algorithm for 
omputing f+
k .
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5. Numeri
al Examples

We have 
omputed several approximations using the algorithm from Se
-

tion 4. Sin
e one of the potential appli
ations for this method is a 
ompres-

sion s
heme, we illustrate our algorithm using a large data set from a high

quality audio re
ording.
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