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ABsTRACT. We introduce a new computationally efficient algorithm
for constructing near optimal rational approximations of large (one-
dimensional) data sets. In contrast to wavelet-type approximations,
these new approximations are effectively shift invariant. We note that
the complexity of current algorithms for computing near optimal ratio-
nal approximations prevents their use for large data sets.

In order to obtain a near optimal rational approximation of a large
data set, we first construct its intermediate B-spline representation.
Then, by using a new rational approximation of B-splines, we arrive
at a suboptimal rational approximation of the data set. We then use a
recently developed fast and accurate reduction algorithm for obtaining
a near optimal rational approximation
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in contrast to wavelet decompositions, rational functions are closed under
translations and, thus, optimal rational approximations are shift invariant.
Indeed, shifting an optimal rational approximation yields the optimal ap-
proximation of the shifted function or data.

Our rational representations are optimal in the sense that, for a given
accuracy of approximation, the number of poles is minimal. We say that
the approximation is “near optimal” if, instead of the desired accuracy , our
algorithms yield accuracy , where is slightly smaller than . In such case
the number of poles may not be minimal in the strict sense (we note that we
have an a posteriori check to identify such situation, if needed). We use the
term “suboptimal”, if we know that the number of poles definitely exceeds
the optimal number (for a given accuracy).

For functions given analytically or for functions described by a relatively
small number of samples, there are several methods for obtaining their near
optimal rational approximations |5, 6, 7|. For a large data set these methods
are impractical due to their computational complexity. On the other hand,
computing a wavelet decomposition of a large data set does not present a
difficulty since its computational cost is linear in the number of samples; we
use these facts in our approach.

We first compute a B-spline representation of the data, which provides a
simple and efficient method for a transition to a suboptimal rational repre-
sentation. For this purpose, we construct a new rational approximation of
B-splines, where the poles are arranged on a rectangular grid aligned with
the location of spline knots. We then split the data into large segments, and
compute suboptimal rational approximations for each segment. Finally, we
compute a near optimal rational approximation using a recently developed,
fast and accurate algorithm in [10].

Although the example provided here is compression of audio recordings,
the algorithm may be used to compress and analyze other types of signals,
e.g., signals obtained by continuous, global seismic monitoring. In particular,
we view compression via near optimal rational approximations as the first
step in signal analysis since the poles carry frequency and time information.
As shown in [6], poles of near optimal rational approximations concentrate
near the singularities of functions. For signals, this corresponds to locations
of rapid change, such as occurring when a piano key is struck or at wave
arrivals in seismic recordings. The location of the poles also carries infor-
mation about local frequency content of the signal in a manner similar to
wavelets, i.e., the logarithmic distance of these locations from the real axis
corresponds to wavelet scales.

We start in Section 2 by providing the background information on the
key existing algorithms that facilitate the development of our new approach.
Next, in Section 3, we construct a rational approximation (with special prop-
erties) of a B-spline to be used in intermediate computations. Then, in Sec-
tion 4, we describe in detail the algorithm for constructing near optimal
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Following [6], from (1) we obtain the rational representation
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. In contrast to standard algorithms, the con-eigenvalues (and con-
eigenvectors) are computed with high relative accuracy in O (M 2Mo)
operations.

e Find all the roots inside the unit disk of the function
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Note that there are exactly M roots vy of v(z) inside the unit disk
based on results from |[3].

e Finally solve for the residuals rj of r(z) by solving the M %< M linear
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Using this algorithm, we obtain f—r = oy, which provides a near optimal
representation of ¥(z) using only M pairs of conjugate-reciprocal poles, v
and Vl_l. The computational complexity of this algorithm is O (MZMO),
where M is the number of resulting poles and Mg is the original number
of poles. Since typically M Mo, this algorithm is effectively linear in its
practical use.

2.3. Spline representations. We use an intermediate representation via
B-splines as the first step towards computing the (near) optimal rational
approximation. Although theoretically we may use scaling functions of any
wavelet-type basis, the choice of B-splines reduces the computational cost of
this intermediate step.

We recall the definition of the m™" degree B-spline as

Bm(X) = Bm-1(X) Bo(x),

with

0, otherwise,

1
Bo(x) = {1' b= :

(see e.g., [8]). For convenience, we only use B-splines of odd degree. It is
easy to show that, in this case, Bm is a piecewise polynomial of degree m
with knots on the integers and supported on [—(m + 1) /2,(m + 1) /2]. To
represent periodic functions, we use periodized versions of B-splines. Let us
introduce the 1-periodic function

m-1
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Given a uniformly sampled 1-periodic function f, we seek the coefficients
aj such that

Kk 2N
(7) f<m>:§aj[3m(k—1), k=0,...,2N

The algorithm in [4, 12| rapidly computes the coefficients @ in (7) using
the Fast Fourier Transform (FFT). It performs the following steps:

e Set Ty = f(%) and compute, for K =0,...,2N,

N
~ 2mi
fi = E i e2aN+IKN

using the FFT.

e Compute, for k =0,...,2N,

N f,
.
am(zn+1)

e The B-spline coefficients are now obtained via the FFT as
2N

1 2mi &
= a +1Jn i =
aj 2N+1”E=00(ne2N1 , J=0,...,2N

This algorithm requires O(N log N) operations. The details may be found
in the appendix in [12].

3. RATIONAL REPRESENTATION OF B-SPLINES

In this section we construct rational approximations of B-splined In our
construction we force the real parts of the poles to be integers | ™, so that
the poles are aligned with the knots of the B-spline. As we explain below,
this reduces the cost of intermediate computations.

Specifically, we are looking for a suboptimal rational approximation of the
form (5), with poles | * ik, so that

- Uk I(X = 1) = Vi1 Tk
(8) Bm(x) +2 .—_Zn;ﬂ kzl | =

where the number of rows of poles, R, will be chosen later. We note that
the constraint on the real part of the poles arranges them on a rectangular
grid (see Figure 2).

We start by computing a near optimal rational approximation of a B-spline
following the approach in [6]. For a given m, we evaluate  at a sufficient
number of samples; specifically for m = 7 we have

9) hn—Bm(§> n=01,...,800,
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where

sinmé\ M+t
né > '

and use the algorithm in Section 2.1 to construct a near optimal rational
approximation.

An example of a near optimal rational approximation of a B-spline of
degree m = 3 may be found in [6]. As observed in that paper, the poles
concentrate towards the locations of the knots of the B-spline since its third
derivative is discontinuous at these points. In our application we would like
to use a higher degree B-spline to lessen the impact of discontinuities and
obtain fewer poles. In Figure 1 we present the results for a near optimal
approximation of a 7th degree B-spline using the same approach as in [6].
Since the poles, tj ®isj, appear in complex conjugate pairs, in Figure 1 we
display (on a logyq scale) only those with negative imaginary part.

We then seek a suboptimal rational representation of B(X) with poles in
the locations indicated in (8) and use the near optimal approximation to
select the parameters Ty in (8). Taking into account that the poles closer to
the real line are responsible for the high frequency content of the represen-
tation, whereas those furthest away capture the lower frequency content, we
limit the range for the imaginary parts of our suboptimal poles by using the
corresponding maximum, S*, and minimum, S~, of the near optimal poles.
We select three rows of poles, i.e., R = 3 in (8), by choosing imaginary parts
T1=s", 13=5s",and

(10) Bn(®) = <

T, = 3 (logT1+logTs)

The real part for all of these poles are at locations |, where | = —=mx1  mxl

(recall that m is odd). The choice of three rows of poles is based on the de-
gree of the B-spline and our accuracy requirements (see Figure 2(b)) and
may be different in other applications.

Once the location of poles is fixed, the



NEAR ORTIMAL RATIONAL ARBBROXIMATIONS OF LARGE DATA SETS

0.3
0.2
0.1F

-0.1
=4

8



NEAR ORTIMAL RATIONAL ARBBROXIMATIONS OF LARGE DATA SETS 9

the optimization package CVX [9]. The resulting absolute error is shown in
Figure 2(b).
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4. NEAR OPTIMAL RATIONAL APPROXIMATIONS

We now briefly describe the key steps
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compute the B-spline coefficients for each section of the signal. Once
the B-spline coefficients for each section are found, by adding com-
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the support of both segments, we preserve the overall accuracy of
the merged approximation. In our experiments, we reduce the set of
poles



NEAR ORTIMAL RATIONAL ARBBROXIMATIONS OF LARGE DATA SETS 13

parts,
_ Ui + iv;j Ui — v
fk — fI:_ + fk + fll<ocal — Z J J_ + J J_
Xk — b —is; X —t; + iSj
Xk —tj=0s ] J ] ]
Ui + iv;j Ui — ivj
fj—xmats Xk — tj — ISj Xk — tj + 1
Ui + v Ui — IV
+ Z j i Y i)
Xk —ti —isj Xk — i +iS;j
Ik~ |<as j j j j

and evaluate f, i~ and flocal separately, where that of F}°@ proceeds
directly. The condition on the factor a is decribed below (o =5 is a typical
choice). It remains to describe an algorithm for evaluating f since f_ is
computed in a similar manner.

We have
fl:_ — Z < uj + iVj- + uj — iVj- )
X~ =ais Xk — tj — IS Xk — tj + 1
(17) =234 —4;>as / e~® Y (y; cos(e¥sj) — v sin(eYsj)) dy.

The effective range of integration in (17) is finite due to the exponential (y —
—oo) and super-exponential (y — oo) decay of the integrand. Our choice
of the factor o prevents an excessive oscillatory behavior of the integrand
within that range. In order to obtain an exponential approximation of the
form

L
(18) fl: = Z Z)\Lje_u'(xk_tj), as=xk— 4 =T, Re(u)=>0,
tj=xy I=1
(where T is sufficiently large to accommodate a given segment of the signal),
we may now proceed as in [5, 7]. Indeed, we discretize the integral in (17) to
any desired precision and use an appropriate algorithm to reduce the number
of terms.
In (18) we may switch the order of summation and, as a result, construct
a recursion (see [13, 5|). Denoting

Qx| = Z )\Ije_UI(Xk_tj),
tj =Xk

we obtain

Ok+1,1 = Z Aij g HI (k1)

fj=Xk+1

— e_lJI(Xk+1_Xk)qk |+ Z )\lje_UI(Xk+1_tj)_

Xk <tj=Xg+1

This recursion leads to an O(L - K)+ O(L - M) algorithm for computing fk+.
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5. NUMERICAL EXAMPLES

We have computed several approximations using the algorithm from Sec-
tion 4. Since one of the potential applications for this method is a compres-
sion scheme, we illustrate our algorithm using a large data set from a high
quality audio recording.
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