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secondary glial network [ 10– 12]. We emphasize, however,
that our results could be applicable to other systems that
operate at or near a critical point [5 ,13,14].

II. MODEL

Following Ref. [8], we consider a network model with
two interdependent networks: A weighted directed neural
network and an unweighted undirected glial network which
transports and regulates the supply of resources needed for
the functioning of the neural network (see Fig. 1).

A. Neural network dynamics

The neural network consists of N excitable nodes that
represent neurons, labeled n = 1, 2, . . . ,N , and M directed
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FIG. 2. (a) Largest eigenvalue, λt , of the neural network adja-
cency matrix for three initial conditions λ0 = 1, 0.98, 1.02 (black
circles, red triangles, and blue squares, respectively) as a function of
time. (b) Average glial resource Rt = ∑

i R
t
i/N as a function of time

for the same initial conditions. In both panels, the dotted (subcritical
case) and the dashed (supercritical case) lines show the predictions
from the 3-D map with noise [Eqs. (9), (11), (13)].

dynamics causes the system to self-organize to the critical
state corresponding to λt = 1 after a transient period. In
Fig. 2(a), we show λt for the three different initial con-
ditions λ0 = 1, 0.98, 1.02 (black circles, red triangles, and
blue squares, respectively). In the three cases, λt approaches
and subsequently remains close to 1 (this will be quantified
in Fig. 4). In Fig. 2(b), we show that the average glial
resource, Rt = ∑

i R
t
i/N , reaches a steady state in all three

cases.
As discussed above, we are interested in whether the

dynamics of the neuronal network reproduces experimental
signatures of critical behavior, in particular, power-law dis-
tributed avalanches of activity. To do this, following Ref. [15],
we define a measure of activity, S(t ) = ∑

m stm/N , and de-
fine an avalanche as the excursion of activity St above a
threshold S∗, i.e., St < S∗ for t < t1, t > t2 and St � S∗ for
t1 � t � t2). We define the size L of the avalanche as L =

FIG. 3. Size distributions P(L) for various values of C1. Blue
(dashed) curves indicate plausible power-law fits (under 10% level of
significance) with P(L) ∝ Lγ such that γ ≈ −3/2 and the red (solid)
curves indicate rejected power-law fits.

N
∑t2

t=t1
St , the number of spikes (excitations) over a single

excursion.
To investigate the robustness of our model to changes in

parameters, we fix D = DG = DS = 5 × 10−5 and vary C1

and C2 logarithmically roughly from 10
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its average row sum; (ii) the intrinsic synapse weights wnm are
uncorrelated with Rnm or have a narrow distribution around
their average 〈w〉 so

∑
n,m wnmRt

η(n,m) ≈ 〈w〉∑
n,m Rt

η(n,m);
and (iii) the glial cells all serve the same number of synapses
k (or the distribution of the number of synapses served is
narrow). While some of these assumptions could be relaxed
and the theory generalized, we leave these considerations for
future work.

First, we define the average amount of resources per glial
cell at time t :

Rt = 1

T

∑
i

Rt
i . (4)

Averaging Eq. (2) over glial cells, we obtain

Rt+1 = Rt +C1 + DS

T

M∑
η=1

Rt
η

T∑
i=1

Giη − DS

T

T∑
i=1

Rt
i

M∑
η=1

Giη.

(5)

From the assumption that each glial cell serves k synapses,
we have

∑M
η=1 Giη = k. Furthermore, since each synapse is

served by a unique glial cell,
∑T

i=1 Giη = 1, and we obtain

Rt+1 = Rt +C1 + DS

T

M∑
η=1

Rt
η − kDSR

t . (6)

The term
∑M

η=1 Rη is the total amount of resources in the
synapses. From the assumption that the fixed synapse weights
wnm are uncorrelated with Rnm (or that their distribution is
sufficiently narrow), the total resources in the synapses can be
related to the sum of all entriesWt

nm = wnmRt
nm of the synapse

weight matrix:

M∑
η=1

Rt
η = 1

〈w〉
∑
n,m

W t
nm. (7)

For large homogeneous, uncorrelated networks, the aver-
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FIG. 4. Root mean squared deviation of λt from 1, σλ =√
〈(λt − 1)2〉t as a function of C1. The shaded grey region indicates

parameter values for which λ̄ = 1 is linearly unstable. Values of C1

to the left of the arrow yield avalanche size distributions that have
plausible power-law fits with exponents close to −3/2.

In addition, since 0 � S̄ � 1, we have the additional in-
equality C1/(kC2)
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