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other parts of the network substantially synchronized.(This a
somewhat counterintuitive effect related to the fact that, in
some cases, increasing the coupling strength destabilizes the
synchronous state[19,28].)

Arbitrarily small amounts of mismatch will eventually,
through the bubbling mechanism, induce desynchronization
bursts. We will show that some of the spatial patterns of this
possibly microscopic mismatch might get amplified to a
macroscopic size in the bursts. We will discuss how one can
use knowledge of the parameter mismatch of the dynamical
units in the network to decrease the effective size of the
mismatch driving the bursts, thereby improving the robust-
ness of the synchronization.

If synchronization is desired, the network and the param-
eters should be constructed so that the synchronous state for
the identical oscillator system is robustly stable(this implies
the absence of noise or mismatch induced desynchronization
bursts). Even then, the synchronization will not be perfect if
the oscillators have parameter mismatch. We will describe
the characteristics of the deviations from exact synchroniza-
tion in terms of the mismatch and the master stability func-
tion.



ḣ = fDFssd −



our example, this region corresponds to 0.16,a,0.48 or
3.8,a,4.5. The range 0.48,a,3.8 will be referred to as
the stable region, and the remaining zone will be called the
unstable region.



this time, the trajectory closely follows the period 1 orbit,
which is the most transversally unstable of the periodic or-
bits. Similar observations have been previously reported for
two coupled chaotic systems[27]
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Adopting the analysis technique of Ref.
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, we can
show that such an enhanced connection has the consequence
that the largest eigenvalue of

G

corresponds to an eigenfunc- tion that is exponentially localized to the region near thestrong connection. That is, for large

N

, the components of this eigenfunction decay exponentially as the distance be-tweenthelocalizedregionandthenodecorrespondingtoacomponentincreases.UsingtheideasofRef.
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differencex5−x4 increases approximately att=9000 and re-
turns to a relatively small value after reaching values consid-
erably above the average.

In Fig. 11(a) we plot the difference between thex coordi-
nate of nodej and its mean over all nodes,xj − x̄, where x̄
=1/N



vector, the strength of the mismatch affecting the localized
mode is proportional to the weight of the localized eigenvec-
tor in the eigenvector decomposition of the mismatch. We
will now discuss two applications of these results.

A. Amplification of mismatch patterns when modes with the
same eigenvalue burst

We have shown that the modes of the mismatch force the
corresponding modes of the deviations from the synchronous
state. When bubbling induced bursting is expected, the size
of the mismatch determines the average time between bursts
[25]. Thus, the size of the mismatch component in modek
determines the average interburst time when that mode is in
the bubbling regime.

When the spectrum of the matrixG is degenerate, the
spatial modes of the mismatch play an extra role. All the
modes sharing the same eigenvaluel have the same stability
properties, and thus, when the corresponding valuegl is in
the bubbling zone, all eigenvectors with this eigenvalue are
equally likely to appear. The only difference between these
modes is the strength with which they are forced, which is
determined by the mismatch component in that mode as
shown in Eq.(16) (or, if noise is present, by the noise com-
ponent in that mode).

An example of this situation is the ring with connections
of equal strength in the long wavelength bursting scenario.
Since the ring is invariant with respect to rotations, the phase
of the long wavelength oscillations can not be determined
only from the network and dynamics part of the problem.
The two modes with the longest wavelength(corresponding
to sinusoidal and cosinusoidal oscillations) have the same
eigenvalue. It is the mismatch that in this case determines the
phase of the long wavelength burst.

We will show how one can determine the phase of the
long wavelength desynchronization burst in the case of
coupled Rössler systems in a ring with equal coupling along
each link. For this system, the mismatch vectorQjsXjd is
given by

Qjsfxj,yj,zjgTd = 1 0

yjdaj

dbj − zjdcj
2 , s17d

where daj =aj − ā and similarly for dbj and dcj. We define
Fksud=o j=1

N ujŵj
k, whereŵj

k is the normalizedj th component
of the k eigenvector described at the beginning of Sec. III.
With this convention, the termsQLdk in Eq. (16) is given by

sQLdk = 1 0

yFksdad

Fksdbd − zFksdcd
2 . s18d

Hereda=fda1,d2, . . . ,dNg and similarly fordb, dc, andy, z
are the trajectories around which the linearization was made.

We consider the case in which mismatch in one parameter
is dominant, for examplea. The mismatch in the parameters
b andc will be assumed negligible compared with that ina,
so thatdb, dc!da. In this case, only the second component

of Eq. (18) is of relevance. Thus modesh1 and hN−1 are
excited with a strength proportional, respectively, toF1sdad
and FN−1sdad; see Eq.(16). The magnitude ofhk will be
proportional toFksdad, and thus the excitation of the long
wavelength mode(which is the only one for which perturba-
tions grow) is proportional to

F1sdadsinS2p j

N
D + FN−1sdadcosS2p j

N
D s19d

~ sinS2p j

N
+ fD , s20d

where tanf=FN−1sdad /F1sdad.
We now show results of numerical simulations illustrating

the above. The parametersN and g will be as in the long
wavelength example in the preceding section. We use the
same random set of perturbations used in that example. As
described above, we obtained the phasef of the long wave-
length component of the vectordai. In Fig. 13 we plotyj
−yj−1 for different times during a burst(filled symbols). In
the same figure, we plot a scaled version of sinfs2p j /12d
+fg−sin(f2ps j −1d /12g+f) (open circles). The phase of the
desynchronization burst is in agreement with that of the long
wavelength component of the mismatch.

When the mismatch affects predominantly one parameter
as in this case, the phase of the bursts can be predicted as
described above. When mismatch in different parameters is
comparable, the phases of the long wavelength modes of the
different parameter mismatches compete and the bursts de-
velop with one of these phases or with a combination of
them.

It must be emphasized that this analysis is possible only
when there is a degeneracy of the eigenvalues. For example,
the location of the localized burst can not be determined in
this way, as it is fixed in the position of the strengthened link.
In this case, the mismatch component in the localized mode
would only affect the average time between bursts.

FIG. 13. yj −yj−1 for different times during a burst(filled sym-
bols), and a scaled version of sinfs2p j /12d+fg−sin(f2ps j
−1d /12g+f) with f as given in the text(open circles). The phase of
the burst spatial pattern coincides with the phase of the long wave-
length component of the mismatch.
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B. Artificial supression of unstable modes using knowledge of
the mismatch

We will now discuss another consequence of Eq.(16). We
imagine a situation where we are given a number of nearly
identical oscillators that we are to connect in a network
which we desire to be in synchronism as much as possible.
Furthermore, we imagine that, through measurements made
individually on each oscillator, we are aware of the amount
of mismatch in each oscillator. The question we address is
this: Using our knowledge of the individual mismatches,
how should we arrange the oscillators in the network so as to
best suppress the frequency of desynchronism bursts? To an-
swer this question, we note that, according to the previous
discussion, we should reduce the mismatch component in the
mode which is in the bubbling region. Since the size of the
mismatch affects the average interburst time[25], reducing
this component is desirable if one wants to improve the qual-
ity of the synchronization. This can be accomplished by ju-
diciously arranging the dynamical units so that thekth mode
of the mismatch is minimized when the corresponding value
glk is in the bubbling region. For example, to suppress long
wavelength bursts, one may arrange the units so that the
parameter errors alternate above and b72lthemion.48 65.4(T)69.9(-)]TJ
T*
[(suppress46357.6(the)6357.lomicimized)6357.0(burrding)6357.6(dcribized)6357.8(in46357.6(the)6357.uppceducing)]TJ
T*
[(festion,)1268.7(one)1268.7(hould)1268.0(arrange)1268.6(the)1268.0(units)1268.0(so)1268.6(that)1268.6(osthe)1268.wingththe



dom perturbation to the parametera of each oscillator chosen
uniformly from within a ±0.1% range ofa=0.2.

In Fig. 15 we show, fork=1, . . . ,7, the quantitieskuhkul
(squares), kusQLdkul (triangles), andkusQLdkul / uhku (circles).

The magnitudes of the forcing term for the different
modesfkusQLdkulg span roughly two orders of magnitude, and
the magnitude of the responseskuhkuld looks roughly propor-
tional to the latter. When the forcing term is corrected by
dividing it by the magnitude of the corresponding Lyapunov
vector uhku, the resulting quantityfkusQLdku l / uhkug matches
very well the observed response.

VI. CONCLUSIONS

We have studied the stability properties of the synchro-
nized state in a network of coupled chaotic dynamical units
when these have a small heterogeneity. We have shown that
when the dynamical units that are coupled in a network are
slightly different, the synchronized state can be interrupted

by large infrequent desynchronization bursts for some values
of the parameters. The range of the parameters for which this
phenomenon is expected can be obtained by performing a
master stability function analysis of the chaotic attractor and
of the periodic orbits embedded in it.

The desynchronization bursts are induced by the bubbling
phenomenon, and have spatial patterns on the network.
These spatial patterns can be predicted from the eigenvectors
of the Laplacian matrixG and the master stability functions
mentioned above. We showed examples illustrating the de-
velopment of bursts with spatial patterns. One of our ex-
amples showed that the strengthening of a single connection
might destabilize the nodes near this connection, while leav-
ing the rest of the network approximately synchronized.

Direct measurement of the parameter mismatch in the el-
ements of a network might prove useful. We discussed how
this knowledge could be used to reduce the frequency of
bursts and to predict the relative weights of different spatial
patterns in a burst. We also discussed how one could, from
knowledge of the mismatch and of the master stability func-
tion, describe the spatial patterns and magnitude of the de-
viations from the synchronized state when the synchroniza-
tion of the corresponding identical unit system is robust.

We emphasize that although we did not discuss the effects
of noise, the phenomenon described in this paper also occurs
for noisy identical oscillators. Desynchronization bursts with
spatial patterns are expected for noisy, identical oscillators if
one has them for noiseless, nonidentical oscillators. The dif-
ference is that the parameter mismatch is always “frozen,” in
the sense that the mismatch is always the same for each
oscillator, whereas for noise this is not the case.
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