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other parts of the network substantially synchronized.(This a
somewhat counterintuitive effect related to the fact that, in
some cases, increasing the coupling strength destabilizes the
synchronous state[19,28].)

Arbitrarily small amounts of mismatch will eventually,
through the bubbling mechanism, induce desynchronization
bursts. We will show that some of the spatial patterns of this
possibly microscopic mismatch might get amplified to a
macroscopic size in the bursts. We will discuss how one can
use knowledge of the parameter mismatch of the dynamical
units in the network to decrease the effective size of the
mismatch driving the bursts, thereby improving the robust-
ness of the synchronization.

If synchronization is desired, the network and the param-
eters should be constructed so that the synchronous state for
the identical oscillator system is robustly stable(this implies
the absence of noise or mismatch induced desynchronization
bursts). Even then, the synchronization will not be perfect if
the oscillators have parameter mismatch. We will describe
the characteristics of the deviations from exact synchroniza-
tion in terms of the mismatch and the master stability func-
tion.
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example of a case with unequal link weights we consider the
case where the previous network is modified by doubling the
strength of one of the links. Let the link whose strength is
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Adopting the analysis technique of Ref.

[
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]

, we can
show that such an enhanced connection has the consequence
that the largest eigenvalue of

G

corresponds to an eigenfunc- tion that is exponentially localized to the region near thestrong connection. That is, for large

N

, the components of this eigenfunction decay exponentially as the distance be-tweenthelocalizedregionandthenodecorrespondingtoacomponentincreases.UsingtheideasofRef.
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for, respectively, nodes
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different from
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or
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+1.
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differencex5−x4 increases approximately att=9000 and re-
turns to a relatively small value after reaching values consid-
erably above the average.

In Fig. 11(a) we plot the difference between thex coordi-
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