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Abstract – Methods for determining the percolation threshold usually study the behavior of
network ensembles and are often restricted to a particular type of probabilistic node/link removal
strategy. We propose a network-specific method to determine the connectivity of nodes below
the percolation threshold and offer an estimate to the percolation threshold in networks with
bidirectional links. Our analysis does not require the assumption that a network belongs to a
specific ensemble and can at the same time easily handle arbitrary removal strategies (previously
an open problem for undirected networks). In validating our analysis, we find that it predicts the
effects of many known complex structures (e.g., degree correlations) and may be used to study
both probabilistic and deterministic attacks.

Copyright c© EPLA, 2012

Introduction. – The study of percolation in complex
networks has broad applications including epidemic
spreading [1], propagation of excitation in neural
networks [2], and robustness of networks to random
failure [3] or strategic attack [4,5]. A central problem is
estimating the percolation threshold, the critical fraction
of nodes or links of an initially connected network
that must be removed to disintegrate it into small
disconnected fragments. Knowledge of how a network
fragments can improve strategies for designing attack [4,5]
and immunization techniques [6] or increasing network
robustness [7,8].

Several studies have proposed techniques to estimate the
percolation threshold of a network for various situations
[4,9–13]. These studies typically use
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estimated in important applications (e.g., the power
grid [19] and air transportation networks [20]). Besides
relaxing the ensemble assumptions of previous research
(e.g., that the network is strictly Markovian), one signif-
icant advantage of this approach is that it can easily
account for arbitrary strategies of node/link removal.
Network-specific approaches are therefore well suited
for developing network-specific attack/defense strategies,
immunization techniques, etc. In addition to estimating
the percolation threshold, we predict the expected number
of nodes accessible to each node after the network disin-
tegrates. This has various applications such as predicting
the outbreak size of an epidemic [1]. We finally show that
our method may be used to study the fragmentation of
a network subject to either probabilistic or deterministic
attack.

Analysis. – We formalize weighted percolation (i.e.,
in which nodes and/or links are retained with arbitrary
probabilities) as follows: for a network with N nodes
described by a possibly asymmetric adjacency matrix A
(Anm = 1, if a link exists from node n to node m and
Anm
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requires the invertibility of the matrix I −D(q). This
matrix is invertible when λD(q) < 1, where λD(q) is the
principal eigenvalue of D(q). As λD(q)→ 1− the out-
component sizes diverge as soutn ∼ [1−λD(q)]

−1wn, where
w is the principal eigenvector of D(q). A similar argument
can be made for the divergence of the in-component sizes.
Since the LSCC above the percolation threshold can be
thought of as the set of vertices with infinite in- and out-
components [11], we predict the percolation threshold as

q∗D = min
q∈[0,1]

{q : λD(q) = 1}. (6)

We note that if there are no bidirectional links,
ÂnmÂmn = 0 and D(q) = qÂ, and the results of ref. [13]
are recovered. While one may solve eq. (6) numerically,
it is both practical and insightful to approximate
eqs. (2)–(6) for large soutn and small q. Letting soutn � 1
and βnm ∼ 1 in eq. (1) yields the approximate eigenvalue
problem soutn ≈ q

∑
m Ânms

out
m . It follows that sout ∝ û.

Upon substitution we find q∼ λ̂−1 under these conditions,
yielding to first order βnm ≈ 1− λ̂−1Âmnûn/ûm. Defining

Cnm = Ânm

(
1− Âmnûn

λ̂ûm

)
, (7)

with principal eigenvalue equation Cz = λCz and using
y≈ 1 = [1, 1, . . . , 1]T , we obtain the predictions

sout ≈ (I − qC)−11, (8)

q∗C ≈ λ−1
C . (9)

In addition to offering simplified predictions for soutn
and q∗, for unweighted percolation (i.e., Â=A and
û = u) these estimates allow us to bound λC using the
principal eigenvalue λ of the network adjacency matrix
A (e.g., Au = λu). Direct application of the Bauer-Fike
theorem [22] for the limiting case of an undirected
network yields |λC −λ|� ||λ−1UAU−1||2 = 1, where
U = diag[u1, . . . , uN ]. Finally, considering 1TCu and
using z∼ u yields λC ≈ λ− 1. One implication of these
results is that q∗→ 0 for large λ, which is consistent
with the lack of an unweighted percolation threshold for
well-connected networks such as scale-free networks [9].
We note that eqs. (8) and (9) are in best agreement with
eqs. (3) and (6) near q= q∗ and when the network is
strictly undirected or strictly directed.

Examples. – In what follows, we will motivate the
need for our theory, recover previous results, explore
several applications, and illustrate the robustness of
our analysis to complex structures in networks. We
will consider both computer-generated and real-world
networks.

We first highlight the need for a network-specific
method for undirected networks and show that unlike the
ensemble approach, a network-specific method captures
variability in q∗
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Fig. 8: (Colour on-line) Predictions to q∗ and experimental
values for percolation on an ER network with N = 104 nodes
and 5N links as a function of the clustering coefficient, c (see
text). Note that the lack of degree correlations yields good
agreement between our results, eq. (6) and eq. (9), and the
ensemble result of ref. [10].

Conclusions. – We have presented a network-specific
approach to weighted percolation in undirected networks
and directed networks with bidirectional links (previously
open problems). As opposed to most previous theory deal-
ing with network ensembles, our .546 726.7rks


