


difference equations, one finds a regularization method for
computing such representations by solving a linear system

of equations [5]. By solving such a linear system, the issue
of discretizing kernels near its singularity is avoided.

In many problems, the choice of basis should
accommodate not only the integral operators but also
differential operators and the boundary conditions.
Multiwavelet bases developed in [6] satisfy many of these
requirements. As is well known, multiwavelet bases retain
some properties of wavelet bases, such as vanishing
moments, orthogonality, and compact support. The
basis functions do not overlap on a given scale and are
organized in small groups of several functions (thus,
multiwavelets) sharing the same support. On the other
hand, some of the basis functions are discontinuous,
similar to the Haar basis and in contrast to wavelets with
regularity. Because of the vanishing moments of the basis
functions, a wide class of integro-differential operators has
effectively sparse representations in these bases. (By an
effectively sparse matrix representation, we mean a
representation that differs from a sparse matrix by
a matrix with a small norm.) More recently, it was
demonstrated in [7] that such bases are useful for
adaptively solving partial differential equations (PDEs)
with boundary conditions.

As a part of the program to develop multidimensional
adaptive PDE solvers, we construct representations for
homogeneous convolution operators in dimensions d 2,
3, and higher. Another method using representations of
low separation rank for functions and operators is
described in [2], and we outline this approach as well.

Let us start with the straightforward multiwavelet
generalization of [1]. For the multiwavelet bases, the
computational costs are O(k*N) in two dimensions and
O(Kk®N) in three dimensions, where order-k multiwavelets
are used and N is the number of boxes in which significant
coefficients exist. In many applications, such as
computational chemistry, it is too expensive to compute
with such algorithms. The algorithms that we present here
have computational complexity of O(k’N) and O(k’N),
respectively.

In our solution method, the use of a localized,
discontinuous, and adaptive basis of multiwavelets is
combined with a representation of functions and operators
that generalizes the separation of variables. This is all
performed with controlled accuracy in finite-precision
arithmetic. The notable features of multiwavelet
representation of operators are the following:

e Multiwavelets form an orthonormal basis.



Although it is not known whether all operators and
functions in practical applications have a short LSR
representation, many important operators, such as the
multiparticle Schrodinger operator and the inverse
Laplacian, can be efficiently represented in this form.

We apply our framework for numerical calculus of
operators. These operations are important in applications
in which functions of operators must be computed.

For example, the Schultz iteration® for the computation
of the inverse requires operator products and sums.

Let us start by providing a formal description of a
multiresolution analysis (MRA) for a multiwavelet
[11, 12]. Such an MRA is defined as an ascending chain of
embedded closed subspaces of the Hilbert space L, ([0, 1]),
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with the properties that
L, 0,1 UV, nyv, 0.

Additional requirements are as follows:

1. The subspace V, is invariant under integer translations.
2. The subspaces V, are all scaled version of one another.
One or more scaling functions  are in V, if and only if
(2'x) isin V.
3. One or more scaling functions  are in V, such that their
rescaled and shifted versions, of the form 22 (2'x k),
constitute an orthonormal basis’ of V.

Well-known examples are the Haar basis, in which the
scaling function is the characteristic function restricted
to the interval [0, 1], the Battle-Lemarie wavelet with
spline scaling function, and the Daubechies families of
wavelets [4], as well as multiwavelets [6]. F6sw3in/ 2



in the multiwavelet basis, the function f is expressed as
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The scalars s} f(x) j(Qdxand dj  f(x) §(x)dx
are respectively called the scaling and multiwavelet
coefficients. These can be computed directly using
Gauss-Legendre quadrature or by the following two-scale
relations from a fine scale to a coarse scale.
The scaling and multiwavelet functions satisfy the two-
scale relations
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where h(®, h?, ¢, and g are coefficients which are
easily computed given the scaling and multiwavelet basis.
By using these relations, further two-scale relations can be
derived for the scaling and multiwavelet coefficients from
scalenandn 1,
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of the basis functions. For example, in two dimensions, the
coeffi



1. We assume that the scaling function coefficients [rl]ij are
known for a sufficiently large distance OO from the singularity.

2. The two-scale relations (e.g., for [rl]ij) are used to
compute [r], for1 OO n.

3. The two-scale relations produce a system of linear
equations for coefficients in the range OO 1.
Coefficients in this range appear on both sides of the
two-scale difference equations.

In general, this criterion is written as
2" r Ar b,

where r represents the vector of coefficients. The matrix A
consists of combinations of the coefficients of two-scale
relations.

Let x, y € R" and let T be a convolution operator with
the kernel K(x, y), homogeneous of degree . Assuming that
the solution to the linear system in condition 3 exists, we
obtain a multiresolution kernel T (x, y) with coefficients r,
from the construction above. We define the multiresolution
regularized operatorsAto be_ TJ. : Vj — Vj, j € Z, with kernels
T(xy) 2’ "T,(2 'x, 2 'y) on the chosen MRA as j —

We illustrate this construction in one dimension. The
two-scale relations for the coefficients representing the
kernel with homogeneity degree are
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where [r]. [,

If the kernel has singularity at the origin and the
multiwavelet coefficients are known for OO 1, the two-
scale relations consist of three equations:

n 01
r0 ij 2 E hii' hjj‘ ru,v,
/l/
- hihtl  hoho ro hihor

0 i I R N Y



Schrodinger’s equation
In [3] a multiwavelet method is applied to solve the
Schrddinger equation:

(2 v -

The integral form of this equation in three dimensions is

1

4

r



new O(N) multiscale simulation capabilities. The sparse
representations of these operators were used to produce
multiresolution methods for applying the Hilbert
transform and solving the Poisson and SchroN
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