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Feedback control stabilization of critical dynamics via resource transport on multilayer networks:
How glia enable learning dynamics in the brain
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Learning and memory are acquired through long-lasting changes in synapses. In the simplest models, such
synaptic potentiation typically leads to runaway excitation, but in reality there must exist processes that robustly
preserve overall stability of the neural system dynamics. How is this accomplished? Various approaches to this
basic question have been considered. Here we propose a particularly compelling and natural mechanism for

metabolic resources among the glia and, ultimately, to neural synapses where they are consumed. Our main result
is that the biophysical constraints imposed by diffusive transport of metabolic resources through the glial network
can prevent runaway growth of synaptic strength, both during ongoing activity and during learning. Our findings
suggest a previously unappreciated role for glial transport of metabolites in the feedback control stabilization of
neural network dynamics during learning.
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I. INTRODUCTION

Glial brain cells play important and diverse roles regulating
the dynamics and structure of neural networks [1,2], including
learning-related changes in synapses [3,4]. In this paper we
focus on one of the most important functions thought to be
served by the glial network—the transport and distribution
of metabolic resources among the neural synapses [5]. This
hypothesis originated from early anatomical studies that
showed that the glia form a bridge between the neural synapses
and the brain vasculature [6] [Fig. 1(a)]. More recently,
experiments have directly demonstrated that glia—astrocytes,
more specifically—deliver metabolic resources to synapses
depending on how active the synapses are [7]. En route to the
synapses, these resources diffuse through an extensive network
of astrocytes [5]. The biophysical properties of such diffusive
transport of resources may have a fundamental influence
on the dynamics of the activity of the neural network that
consumes the resources [8–11]. For example, a highly active
synapse may consume all of its local resources, thus forcing
it to become less active until more resources arrive, and may
drain resources away from less active synapses, thus shaping
functional differences among synapses. Here, in order to
study these possibilities, we introduce a computational model
incorporating both a neural network and a glial network. Our
model neurons interact via synapses whose efficacy evolves
according to activity-dependent learning rules, namely spike-
timing-dependent plasticity (STDP) [12,13]. Under many
circumstances, modeling of STDP can result in unstable
growth of synaptic efficacy and typically requires additional
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types of learning rules to prevent such runaway growth (see
discussion in the Conclusion section and Refs. [13,14]).
The main finding of our work is that diffusive transport of
resources via the glial network can serve to prevent runaway
synaptic growth due to STDP, thereby maintaining stable
neural network dynamics. We show that this phenomenon
requires resource transport among the glia; locally confined
production and consumption of resources result in unstable
neural network dynamics. The known roles played by the glia
in synaptic plasticity are diverse and numerous [15], but, to
our knowledge, our work is the first to show that metabolic
resource distribution can play such a stabilizing role.

More broadly, there are many examples of dynamical
processes on networks in which the macroscopic network
dynamics undergoes a phase transition as the strength of
interactions between the network nodes is increased, including
synchronization [16,17], boolean models of gene regulation
networks [18,19], and functional brain networks [20,21]. In
some important cases, it has been argued that it is desirable
for the system to operate at the onset of the phase transition:
for Boolean gene regulatory networks, it has been proposed
that operating at the “edge of chaos” provides the network
with enough flexibility to have a number of different, useful
attractors, but without being too sensitive to perturbations
[18]; for neuronal networks, it has been hypothesized that
operating at critical point where the strengths of inhibitory and
excitatory synapses are balanced provides various benefits for
information processing and storage, both in neuronal network
models [22] and in coarser models based on synchronization
of neuronal rhythms [23]; for wireless networks, it has
been suggested that operating just past a phase transition in
connectivity can minimize costs while achieving operational
requirements [24]. A natural question is how these networks
can robustly maintain operation at the critical point without
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B. Resource-transport dynamics

Resource diffuses between glia through their connection
network (characterized by the adjacency matrixU) and
between glia and the synapses they serve (via the glial-neural
connection network characterized by the adjacency matrixG).
Our model for the evolution of the amount of resourceRt

i at
glial cell i and the amount of resourceRt

� at synapse� is
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whereDG is the rate of diffusion between glial cells, andDS
is the rate of diffusion between glia and synapses. Moreover,
we enforceR� � 0, i.e., if Eq. (5) yields Rt+ 1

� < 0, then we
replace it by 0. The Þrst term on the right hand side of Eq. (4),
Rt

i , is the amount of resource in glial celli at time t. The
parameterC1 denotes the amount of resource added to each
glial cell at each time step (e.g., supplied by capillary blood
vessels). For simplicity, we assume each glial cell has the same
C1. The last two terms are the amount of resource transported
to glial cell i
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