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if the factorized matrix does not admit the same sparse structure as the original matrix.
Techniques such as graph theory have been developed to minimize the generation of
so-called fill-ins [8] . Here we demonstrate that the specialized structure of NS-forms
may be preserved during factorization, leading to efficient factorization algorithms
using sparse data structures.

We begin by describing a factorization procedure for the NS-form. The factorization
of the NS-form is superficially similar to the standard LU factorization but, in fact,
is distinct in several significant ways. First, it is an approximate factorization where
the accuracy, e, is finite but arbitrary. Second, the factorization of NS-forms requires
O(Nr(0log e)2) operations for operators arising from strictly elliptic problems. Com-
bined with O(Nr(0log e)) procedures of ‘‘multiscale’’ forward and back substitu-
tions, it yields a direct multiresolution solver. Third, the actual LU factorization is
performed on well-conditioned matrices even if the original matrix (arising from a
strictly elliptic problem) has a large condition number. Using the multiresolution
solver, we also construct the inverse in O(N(0log e)2)) operations. We note that in
problems where the choice of the size of the matrix and of accuracy are connected,
typically e } N0a , a � 0.

Our direct multiresolution solver presents an alternative to an iterative multigrid
approach. In fact, the algorithms of this paper may be viewed as a ‘‘direct multigrid,’’
without V and W cycles (or, more precisely within this terminology, with a single V
cycle) . The absence of cycles of the usual full multigrid methods (for references see
[9]) is easy to explain since we generate (within computational accuracy) a linear
system for the exact projection of the solution on coarse scales. Once such a system
is solved, there is no need to revisit that scale again. Thus, the algorithms of this
paper provide a connection between multigrid methods and classical techniques of
Gaussian elimination and LU decomposition. In this role, our approach provides a
systematic algebraic structure to multiresolution computations (what we call multireso-
lution linear algebra) , and we go to some length to provide details of such algebraic
operations.

We recall that the non-standard form is not an ordinary matrix. The NS-form has
a multiresolution structure, and the usual operations such as multiplication of a vector
by the NS-form or multiplication of NS-forms are different from the standard matrix–
vector and matrix–matrix multiplications. The remarkable feature of the non-standard
form is the decoupling it achieves among the scales.

The outline of the paper is as follows: in Sections 2 and 3 we introduce multiresolu-
tion analysis and the notion of the non-standard form which serve as a foundation for
the algorithms presented in the paper. We do so without specific reference to the
properties of wavelets (e.g., number of vanishing moments, size of the support, etc) .
This allows us to describe the algebraic structure of the algorithms without considering
specific bases. On the other hand, the sparsity of the non-standard form for a given
accuracy, and thus the operation count of the algorithms, does depend on the choice
of the basis. We discuss the issues of sparsity separately in Section 5.

In Section 4 we describe multiresolution LU factorization. In particular, we describe
in Section 4.2 the procedure for computing lower and upper NS-forms where the NS-
form of an operator has been precomputed. In Section 4.3 we describe how to construct
the lower and upper NS-forms directly from the original operator, without precomput-
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FIG. 1. Organization of the non-standard form of a matrix. The submatrices Aj , Bj , and Cj , j � 1, 2,
3, and T3 are the only non-zero submatrices.

Aj : Wj r Wj , (2.10a)

Bj : Vj r Wj , (2.10b)

Cj : Wj r Vj , (2.10c)

whereas operators Tj operate on subspaces Vj ,

Tj : Vj r Vj . (2.11)

The wavelet transform recursively represents operators Tj as

S Aj/1 Bj/1

Cj/1 Tj/1
D , (2.12)

which is a mapping

S Aj/1 Bj/1

Cj/1 Tj/1
D : Wj/1 ! Vj/1 r Wj/1 ! Vj/1 , (2.13)

where Vj � Wj/1 ! Vj/1 . If the number of scales is finite, then we obtain T0 �
{{Aj , Bj , Cj}1¡j¡n , Tn}, and the blocks of the NS-form are organized as blocks of a
matrix shown in Fig. 1.

We note that for d ¢ 2 the blocks of the NS-form have additional structure. From
now on we will assume that d � 1, although many considerations are essentially
the same for d ¢ 2. We will defer additional remarks about dimensions d ¢ 2 to
Section 10.

Remark 2.1. Since projection operators involve subsampling, equalities like that
in (2.9) may appear inconsistent if we compare sizes of blocks in Fig. 1. For example,
the size of blocks A3 , B3 , C3 , and T3 is not the same as that of T2 . The transition
from operator notation as in (2.9) to a matrix notation involves combining the blocks
A3 , B3 , C3 , and T3 as in (2.12), and performing one step of the two-dimensional
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FIG. 16. The NS-form of T01
0 , the inverse for operator in Example 6. Entries above the threshold 1007

are shown in black. We observe that blocks Ĉ and B̃ are zero on several scales.

The results of this test are shown in Table 6. Column 2 contains the total time
required to fill the matrix, compute the multiresolution LU factors, and compute the
inverse. Columns 3 and 4 contain the error in the computed solution, and column 5
contains the compression ratio for the inverse operator. We observe that for this
example, the time required to compute the inverse is roughly a factor of 2 greater
than for computing the LU factorization.

Condition numbers. In Table 7 we present the condition numbers of matrices in
four examples and the condition numbers of blocks which are actually factorized
during the multiresolution LU factorization. The top row shows the condition number
of the original matrix of size N � 256. In rows 2 through 7 we present the condition
number of blocks Aj of the NS-form at different scales j � 1, . . . , 7, which are
factorized during multiresolution LU factorization.

The second column of Table 7 (Example 2) is most interesting since it shows
nearly perfect condition numbers on all scales, whereas the original operator has
condition number of O(N 2) , where the size of the matrix is N 1 N .

10. GENERALIZATIONS AND CONCLUSIONS

The sparsity of multiresolution LU factorization algorithms does not depend on
dimension. This is in a sharp contrast with the usual practice, where LU factorization

TABLE 6
Numerical Results for Example 6

Errors Comp. ratioRun time

N tinv L‘ L2 T01
0

128 0.55 2.14 1 1007 1.88 1 1007 21.90
256 1.44 2.18 1 1007 2.29 1 1007 74.73
512 3.05 2.60 1 1007 2.04 1 1007 222.34

1024 6.83 1.57 1 1007 1.55 1 1007 615.36
2048 15.79 1.53 1 1007 1.48 1 1007 1572.08
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