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error is accomplished by discarding small wavelet coefficients [5]. We presently
use Alpert’s definition of the multiwavelet basis [7].

Since V k
n is the space of polynomials on level n, the first k moments vanish

for functions in W k
n (since they are by construction orthogonal to V k

n ). This
property gives rise to sparse representations of smooth functions and operators.
We use the Poisson equation in three dimensions

∇2u = −4πρ (4)

with free-space boundary conditions (u(∞) = u′(∞) = 0) as an example of how
this enables us to replace iterative solution of differential equations with fast
application of integral operators.

The matrix representation of the Laplacian in either the multiwavelet basis or
standard discretizations is badly conditioned. Moreover, the largest eigenvalues
are associated with the highest frequencies. This leads to the requirement of
good preconditioners for the efficient iterative solution of differential equations.
However, the Green’s function for the Poisson equation is known and we may
immediately write the solution as

u(r) =
∫

ρ(s)
|r − s| ds. (5)

That the multiwavelet representation of this integral operator is sparse can be
readily seen from the multipole expansion of 1/r
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where l and l′ label the result and source boxes, and φnl
i (x) is the i’th Legendre

polynomial in box l
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slo = − log(4T/µ2)/2 (16)
1/h = .2 + 0.47 log10 ε (17)

where the range of the quadrature is [slo, shi], the expansion has a relative preci-
sion of ε over the range [rlo, 1], and h is the spacing of the quadrature points. The
parameter T is empirically determined to be 5, 10, 14, 18, and 24, respectively
for accuracies 1e-2, 1e-4, 1e-6, 1e-8, and 1e-10. However, because of the super-
exponential decay, the number of quadrature points is only weakly dependent
upon T
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