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approximation methods for solving partial di�erential and integral equations in higher

dimensions, where the ability to 
onstru
t near optimal rational (or exponential) ap-

proximations to fun
tions of one variable is a key 
omponent.

Sin
e the seminal result in [21℄, it has been known that fun
tions with singulari-

ties may be e�
iently approximated in the L∞
norm using proper rational fun
tions.

Indeed, the number of poles required to approximate a fun
tion with singularities is

dire
tly related to the sparsity of the fun
tion's wavelet 
oe�
ients (see [16, Theorem

11.1℄). However, in 
ontrast to more traditional L2
-type methods (using e.g., wavelet

bases as in [2℄), the use of su
h optimal L∞
-type approximations in numeri
al analysis

has been limited due to a la
k of e�
ient and robust algorithms.

Given a proper rational fun
tion f , we present an algorithm�whi
h we refer to as

the redu
tion algorithm�to 
ompute, for a �xed number 20.8801 0J
30e



SOLVING BURGERS' EQUATION USING RATIONAL APPROXIMATIONS 3

many times. For example, in the 
ontext of solving Burgers' equation with vis
osity

ν = 10−5
and approximation toleran
e ǫ = 10−9

, on the order of a million appli
ations

of the redu
tion algorithm are performed.

For fun
tions with n poles resulting from intermediate 
omputations, the redu
tion

algorithm requires only O (m2n) operations to �nd an optimal approximation with m
poles. In our numeri
al experiments with the redu
tion algorithm, we �nd that an

approximation error of ǫ ≈ 10−14
may be reliably obtained within double pre
ision

arithmeti
, even when the number of poles n is large and their spatial distribution is

highly 
lustered.

There is a signi�
ant literature devoted to appli
ations of the AAK approa
h in


ontrol theory (
f. [23℄), signal pro
essing (
f. [8℄), and numeri
al analysis (
f. [25,

27, 29, 5℄), to mention just a sele
t few. The reformulation of the AAK theory given

here 
ould be related to the approa
hes taken in [28℄, [20℄, and [10℄. However, as far

as we know, all of the AAK-type algorithms dis
ussed in the literature require O (n3)
operations when applied to a rational fun
tion with n poles, and may require extended

pre
ision arithmeti
 if high a

ura
y of the result is desired. In 
ontrast, our redu
tion

algorithm requires only O (m2n) operations to �nd an optimal approximation with m
poles and a
hieves high a

ura
y (ǫ ≈ 10−14

) using only double pre
ision arithmeti
.

We show in this paper that solutions of Burgers' equation with vis
osity ν require

only O (log ν−1) + O (log ǫ−1) poles for its rational approximation with an L∞
error of

size ǫ. Burgers' equation has been traditionally used to test the limits of new numeri
al

methods sin
e the solution develops sharp transition regions that need to be 
aptured

adaptively. Con
eptually, the two 
losest adaptive methods are those in [24℄ and [2℄.

While in [2℄ adaptivity is a
hieved by adding wavelet s
ales when needed, the algorithm

in [24℄ a
hieves spe
tral a

ura
y by aTd
[(Con
eptuall.3(a)3000.69b8.6614.1602 o)T 0 Td9 0 Td
(resuTj
32.0)Tj
49(the)Tj
20.6398 0 1d
(when)Tj
3nej
13
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14.03986y
,

There iTj
3nej
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smaller number of poles. As mentioned earlier, our redu
tion algorithm is based on

a theorem of Adamyan, Arov, and Krein ([1℄), whi
h 
on
erns the approximation of

a periodi
 fun
tion f , essentially bounded on the unit 
ir
le ∂D, by a meromorphi


fun
tion r(z) (z = e2πix) 
ontaining a spe
i�ed number of poles in the unit disk. We

limit our presentation to rational fun
tions f taking real values on ∂D. This 
ase turns
out to be parti
ularly important, as it allows us to develop a pra
ti
al algorithm based

on approximating the Fourier series 
oe�
ients of f with positive index. More general

fun
tions f may be dealt with by using the te
hniques in
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The fa
t that there are exa
tly m zeros in the unit disk, 
orresponding to the

indexm of the 
on-eigenvalue λm, is a 
onsequen
e of the AAK theory. As shown

in Se
tion 4.1 (see equations (4.8)), the key to the high a

ura
y of evaluating

the fun
tion v(z) is the relationship

(2.4) v (γi) = ui/
√
αi, i = 1, . . . , n,

whi
h, together with the n poles 1/γi, uniquely determines v(z).
Step 3: Find the 
oe�
ients βi of g(z) by solving the m×m linear system,

(2.5)

m∑

i=1

1

1 − ηiηj

βi =
n∑

i=1

αi

1 − γiηj

, j = 1, . . . , m.

Denoting ‖f − g‖∞ = supx∈[0,1] |f(e−2πix) − g(e−2πix)|, the resulting rational approxi-

mation g(e2πix) satis�es ‖f−g‖∞ ≈ ǫ and, thus, is 
lose to the best L∞
-error a
hievable

by rational fun
tions with no more than m poles in the unit disk (see also [25℄ for a

dis
ussion of optimal rational approximations).

Remark 1. In Step 3, we solve for the 
oe�
ients βi in O (m2) operations by exploiting

the stru
ture of Cau
hy matri
es (see [11, 7℄). We note that su
h a solver may require

quadruple pre
ision if the overall desired approximation error ǫ is smaller than ≈ 10−10
.

However, sin
e m = log (ǫ−1) is small, Step 3 for �nding 
oe�
ients βi does not impa
t

the overall speed of the algorithm even if performed in quadruple pre
ision.

Remark 2. In appli
ations where the fun
tion f (e2πix) has singularities or sharp tran-

sitions, the poles γj in the rational representation of f (e2πix) may be lo
ated very 
lose

to the unit 
ir
le (and/or to ea
h other). In su
h 
ases, it is advantageous to maintain

the poles in the form γj = exp (−τj), sin
e they are well separated on a logarithmi


s
ale. Importantly, the redu
tion algorithm 
omputes the new poles

j =exp ( −
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(r < 1). This estimate shows that, for a

ura
y ǫ, we may reasonably expe
t O (log ǫ−1)
terms in our approximation. In fa
t, we have observed this behavior in our numeri
al

experiments.

Let us now brie�y dis
uss the algorithmi
 aspe
ts behind e�
ien
y and a

ura
y of

solving steps 1-3 above.

2.2. A

urate 
omputation of 
on-eigenvalues/eigenve
tors. For Step 1, we use
a re
ent algorithm developed and analyzed in [?℄ for 
omputing 
on-eigenvalues of

Cau
hy matri
es with high relative a

ura
y, whi
h we brie�y des
ribe in this se
tion.

It is well-known that standard eigenvalue algorithms 
ompute an approximate 
on-

eigenvalue

̂
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using (2.4) to rewrite (2.3) as

n∑

i=1

αi v (γi)

1 − γiz
= λmv(z),

we see that
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to the known eigenvalues β1, . . . , βm−1, one by one. We then orthogonalize these m− 1
ve
tors using the stabilized Gram-S
hmidt pro
edure, thus yielding a basis q̂1, . . . , q̂m−1

for the invariant subspa
e span {q1, . . . , qm−1} = span {q̂1, . . . , q̂m−1}. Finally, we use

simultaneous inverse iteration applied to q̂1, . . . , q̂m−1, q, where q is 
hosen randomly.

Noti
e that ea
h step of this pro
ess8ess

1
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depend on the timestep t, the number Mt of quadrature nodes in time, and the number

of quadrature nodes Mx used in spa
e to dis
retize the 
onvolution kernels. From the

rapid de
ay of the periodi
 heat kernel,

Kν(x, t) =
1√
4πνt

∑

k∈Z

e−(x+k)2/(4νt),

where ν is the vis
osity parameter in (3.1), it follows that φl
p and ψl

p are lo
alized to a

O
(√
νt
)
neighborhood of x = 0 (see Se
tion 4.2 for details).

We assume that the initial fun
tion u(x, 0) = u0 (x) is given as a periodi
 rational

fun
tion of the form

u0(x) =

M0∑

j=1

αj

e−2πix − γj
+

M0∑

i=1

αj

e2πix − γj
+ α0,

and that this representation is nearly optimal. We then solve the system of equations

(3.2) by approximating ea
h fun
tion ul using the redu
tion algorithm. We obtain, via

�xed point iteration applied to (3.2) and the redu
tion algorithm, rational fun
tions

ul(x) of the form,

(3.3) ul(x) =

Ml∑

j=1

αj,l

e−2πix − γj,l

+

Ml∑

j=1

αj,l

e2πix − γj,l

+ α0,

whi
h solve (3.2) to a spe
i�ed level of pre
ision, and have a (near) optimal number of

poles.

More spe
i�
ally, given u
(m)
j ≈ uj(x), 1 ≤ j ≤ Mt, at iteration m, we use (3.2) to

de�ne the next iterates u
(m+1)
l (x) for l = 1, . . . ,Mt,

u
(m+1)
l (x) =

Mx∑

p=1

λl
pu0
(
x− φl

p

)

(3.4)

+
Mx∑

p=1

λl
p,j

l−l∑

j=1

{(
u
(m+1)
j

(
x− ψl

p

))2
+

Mt∑

j=l

de�ne the next iterates
p

m )
j � − ψl
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Figure 3.3. Solution u(x, t) at time t = .4, lo
alized about the transition
region (1/2 − 10−5, 1/2 + 10−5). Note the absen
e of any Gibbs-type phe-
nomena.
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Suppose f ∈ L∞
has the
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we 
al
ulate from (4.4)

∞∑

j=1

(
M∑

m=1

αmγ
i+j−2
m

)
vj =

M∑

m=1

αmγ
i−1
m

∞∑

j=1

γj−1
m vj

=

M∑

m=1

αmγ
i−1
m v (γm) = σwi.

Now multiplying both sides of the last equation by zi−1
and summing, we obtain

(4.6)

M∑

m=1

αm

1 − γmz
v (γm) = σz−1w(z−1).

Similarly, from (4.5), we have

∞∑

j=1

(
M∑

m=1

αmγm
i+j−2

)
wj =

M∑

m=1

αmγm
i−1

∞∑

j=1

γm
j−1wj

=
M∑

m=1

αmγm
i−1
(
γm

−1w
(
γm

−1
))

= σvi.

Finally, multiplying by zi−1
and summing, we arrive at

(4.7)

M∑

m=1

αm

1 − γmz
γm

−1w
(
γm

−1
)
= σv(z).

Hen
e, for a fun
tion f of the form (4.3), the fun
tions v and w in (4.2) turn out to

be rational and fully determined by their values at the poles of f . Taking z = γn and

z = γn in equations (4.6) and (4.7), respe
tively, we obtain

M∑

m=1

αm



SOLVING BURGERS' EQUATION USING RATIONAL APPROXIMATIONS 16

Let us de�ne the ve
tors p and q with entries pm = α
1

2

mv (γm) , qm = αn
1/2γm

−1w (γm
−1),

and the positive de�nite matrix C with entries

Cmn =
α

1

2

mαn
1

2

1 − γmγn
.

Then the above equations are equivalent to

C p = σq,

C q = σp,

whi
h may be redu
ed to a 
on-eigenvalue problem for σ > 0, see [15, Se
tion 4.6℄. One

simple way to see this and obtain an equation of the form (2.2) is by de�ning x = p+ q.
If x = 0, then iq = ip and hen
e

C(ip) = σip.

If x 6= 0, we have

Cx = σx

and, in both 
ases, we obtain a 
on-eigenvalue problem for the matrix C.

4.2. Dis
retization of Burgers' equation. We rewrite the equation (3.1) in semi-

group form (see, e.g., [14, 17, 18, 3℄)

(4.9) u(t) = eνtLu(0) +

ˆ t

0

eν(t−τ)LN(u(τ))dτ,

where u(t) denotes the fun
tion u(·, t). The operator L, Lu(x) = uxx, represents the

linear part of (3.1) while the operator N , N(u) = 1/2 (u2)x, represents the nonlinear

part. The a
tion of the operator eνtL
on a fun
tion f is given by

(
eνtLf

)
(x) =

ˆ
1

2

− 1

2

Kν(y, t)f(x− y)dy, with Kν(y, t) =
1√
4πνt

∑

k∈Z

e−(y+k)2/(4νt).

To dis
retize equation (4.9) in time, we use the approximation

N (u(τ)) ≈
Mt∑

j=1

Rj(τ)N (u (τj)) , τ ∈ [0, t]

where {τj}Mt

j=1 denote the Gauss-Legendre nodes on the interval (0, t), and Rj(τ) denote
the Legendre interpolating polynomials for these nodes, i.e.,

Rj(τm) = δjm, for j,m = 1, . . . ,Mt.

Taking t = τl in (4.9), we obtain the semi-dis
rete system of equations

(4.10) ul = eντlLu0 +
Mt∑

j=1

(
ˆ τl

0

eν(τl−τ)LRj(τ)dτ

)
N (uj) , 1 ≤ l ≤ Mt,

where ul = ul(x) denote the 
omputed values of u at time t = τl and u0 = u(x, 0).
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For the spatial dis
retization, using N(u) = 1/2 (u2)x and integrating by parts, equa-

tion (4.10) may be written as

(4.11) ul(x) =

ˆ 1

2

− 1

2

Kν(y, τl)u0(x− y)dy +
Mt∑

j=1

ˆ 1

2

− 1

2

Lν,j(y, τl)u
2
j(x− y)dy,

where the kernel Lν,j(y, t) is given by

Lν,j(y, t) = −1

2

ˆ t

0

(∂yKν) (y, t− s)Rj(s)ds.

For small ν
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