FAST AND ACCURATE CON-EIGENVALUE ALGORITHM FOR OPTIMAL
RATIONAL APPROXIMATIONS *

T.S. HAUT AND G. BEYLKIN

ABsTrRACT. The need to compute small con-eigenvalues and the associated con-eigenvectors of
positive-definite Cauchy matrices naturally arises when constructing rational approximations with
a (near) optimally small L° error. Specifically, given a rational function with n poles in the unit
disk, a rational approximation with m < n poles in the unit disk may be obtained from the mth
con-eigenvector of an n X n Cauchy matrix, where the associated con-eigenvalue \,, > 0 gives
the approximation error in the L° norm. Unfortunately, standard algorithms do not accurately
compute small con-eigenvalues (and the associated con-eigenvectors) and, in particular, yield few
or no correct digits for con-eigenvalues smaller than the machine roundoff. We develop a fast
and accurate algorithm for computing con-eigenvalues and con-eigenvectors of positive-definite
Cauchy matrices, yielding even the tiniest con-eigenvalues with high relative accuracy. The algo-
rithm computes the mth con-eigenvalue in O (m n) operations and, since the con-eigenvalues of
positive-definite Cauchy matrices decay exponentially fast, we obtain (near) optimal rational ap-
proximations in O (n (1og 6_1) ) operations, where § is the approximation error in the L° norm.
We provide error bounds demonstrating high relative accuracy of the computed con-eigenvalues
and the high accuracy of the unit con-eigenvectors. We also provide examples of using the al-
gorithm to compute (near) optimal rational approximations of functions with singularities and
sharp transitions, where approximation errors close to machine roundoff are obtained. Finally, we
present numerical tests on random (complex-valued) Cauchy matrices to show that the algorithm
computes all the con-eigenvalues and con-eigenvectors with nearly full precision.

1. INTRODUCTION

We present an algorithm for computing with high relative accuracy the con-eigenvalue decompo-
sition of positive-definite Cauchy matrices,
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the error close to Am. The form 1.2) ensures that f (
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positive-definite matrices [20], scaled diagonally dominant matrices [4], totally positive matrices
[B1], certain indefinite matrices [#6], and Cauchy matrices as well as, more generally, matrices with
displacement rank one) [15]. For such matrices, recent algorithmic advances see [24, 25]) make the
cost of achieving high relative accuracy comparable to that of alternative and less accurate) SVD
methods.

The con-eigenvalue algorithm considered here is based on computing the eigenvalue decomposition
of the product, CC, of positive-definite Cauchy matrices C and C, and is similar to the algorithm in
[17] for the generalized eigenvalue decomposition, as well as the algorithm in [28] for the product SVD
decomposition. We also rely on the algorithm in [15] for computing, with high relative accuracy,
the Cholesky decomposition with complete pivoting) C = (PL)D? (PL)" of a positive-definite
Cauchy matrix C. However, since we are interested in computing only con-eigenvalues of some
approximate size 8, we stop
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paper with other algorithms in the literature for constructing optimal rational approximations. For
the convenience of the reader we also provide relevant background material in Section 7.

2. ACCURATE CON-EIGENVALUE DECOMPOSITION (AN INFORMAL DERIVATION)

2.1. Constructing optimal rational approximations via a con-eigenvalue problem. In or-
der to motivate our con-eigenvalue algorithm, let us explain how the accurate computation of small
con-eigenvalues and associated con-eigenvectors allows us to construct optimal rational approxima-
tions.

We consider an algorithm to find a rational approximation r(e?™) to f(e?™) in 1.2) with a
specified number of poles and with a nearly) optimally small error in the L*-norm. The algorithm
is based on a theorem of Adamyan, Arov, and Krein referred to below as the AAK Theorem) [B].
We note that the formulation given below in terms of a con-eigenvalue problem is similar to the
approach taken in [14] and [6].

Given a target accuracy & for the error in the L*°-norm, the steps for computing the rational

approximant r(z),
m m a
B Bi Biz
r(z)_;Z—m +;1—fﬁz + do,

are as follows:

1) Compute a con-eigenvalue 0 < Ay < 0 and corresponding con-eigenvector U of the Cauchy
matrix Cij = Ci;j (vi, aj),

Uy
uz ajb; ..
2.1) CU = AU, where u = .|, Gij=—2 ij=1,...,n,
: Xi +Yj
Un

and a; = \/@i/Yi, bj = \/Tj, Xi = V; *, ¥j = —Vj. The con-eigenvalues of C are labeled in
non-increasing order, Ay > A > -+ > Ap.

2) Find the exactly) m exgceyh)



new p
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Remark 1. In practice, finding the new poles n; using the formula for v(z) in 2.2) is ill-advised,
since evaluating v(z) in this form could result in loss of significant digits through catastrophic
cancellation. Indeed, it turns out see [6, Section 6] and [27]) that the values of the con-eigenvector
components satisfy Ui = /0Gv (yi), i = 1,...,n. It then follows that the sum 2.2) must suffer
cancellation of about logyo (Ay!) digits if v (yi) and v (z) are of comparable size note that Am
controls the approximation error and, thus, is necessarily small). On the other hand, the function
values v (Yi) = ui//05, i = 1,...,n, along with the n poles 1/yj of v(z), completely determine 2.2).
Since the poles yi of T(z) are often close to the poles ni of r(z), we have observed that evaluating
v(z) by using rational interpolation via continued fractions with the known values v (yi) allows us
to obtain the new poles n; with nearly full precision. In particular, an approximation V(z) to v(z) is
computed via continued fractions,

_ al
S lta(z-y)/(4az(z—y2)/(1+---))

2.4) (2)

where the coefficients a; are determined from the interpolation conditions V(y;j) = v (Yi). If the poles
yi are given in the form y; = exp (—Ti), we find that Newton’s method on V (exp (—n)) yields the
new poles Nj = exp (—{;) with nearly full relative accuracy even when Re ({(
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Algorithm 1 ConEig RRD (X, D) computes accurate con-eigenvalue decomposition of XD?X*.
Input: rank-revealing factors X and D of dimensions n x m and m x m), where the diagonal of
D > 0 is decreasing. Output: m con-eigenvalues/con-eigenvectors of X DX*, contained in y and T.
(7 T) < ConEig_RRD (X, D)

1. Form G =D (X™X)D

2. Compute QR factors (Q,R) < Householder_QR of G (G =

QR), with optional pivoting (see Section 7.3)

3. Compute the SVD factors (U, ;,Ur) <~ Jacobi(R) of R (R=

UirUf) , using one-sided Jacobi, applied from the left (see Section 7.4)

4. Compute R; = D-IRD 1, X; = D71U|/;.“1/2, and Y; =

Rflxl (see (2.6) below)

5. Form the matrix of con-eigenvectors T =

XY1, and output con-eigenvalues ; and con-eigenvectors T

Importantly, for Cauchy matrices A = C) the elements of D decay exponentially fast, and it
would appear that computing the con-eigenvectors Zj = YDV_i[ ;*Illl 2 might lead to wildly inaccurate
results even if the right singular vector of G, vj, is computed accurately. However, as we show
in Section 5, Algorithm 1 achieves high accuracy despite the extreme ill-conditioning of D. The

key reason is that the right singular vector vj, corresponding to the singular value yij, scales like
172 _1/2

Vi (J)| < cy min ( D/ 5 ) Fii /Djj), and the computed singular vector Vi is accurate relative to
the scaling in D and ; in the sense that
S | Dij  Vnii
) = 0)] < min { DI Y o).
' ' Vi Dij

For Cauchy matrices, the quantity min (Dj i/ ;jl,/ 2,‘;.1i1i/ 2y Dj j) decreases exponentially fast away

from the diagonal i = j.

Let us give an informal explanation of the reasons why Algorithm 1 yields accurate results. As
discussed in Section 7.8, the QR Householder algorithm computes an accurate rank-revealing decom-
position of G = QR. It turns out see the online version [28, Lemma 11]) that R may be factored as
R = DZRO, where Rg is graded relative to D in the sense thatHDRoD_lu and HDRo_lD_lH are not
too large, as long as the n leading principal minors of X TX are well-conditioned. Therefore, from the
discussion in Section 7.4 see in particular Theorem 10), the one-sided Jacobi algorithm computes

the ith left singular vector u;j of R accurately relative to the scaling min {Djj /‘“1/2,,;ﬁi1i/2/Djj } It

roii
follows that D_luil;ﬁili/ 2 may also be computed accurately. Finally, since the ith right singular vector
vi of R and G) satisfies
Dvip 2 = DR Uiy’
2.6) = (DRoD™Y) " (D uii?),

172

the con-eigenvector Zj = X (DV{;ﬁﬁ ) may be computed accurately, as long as DRoD ! is com-

puted accurately and is well-conditioned we show this is the case if n leading principal minors of
XTX are #980Td[ j)1.46911]TJI90R| TJ5082
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accuracy. As explained in the next section, yjfl — Vi may be accurately computed
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Algorithm 2 Pivot_ Order (a, b, X, Yy, d) pre-computes pivot order for Cholesky factorization of n x
N positive-definite Cauchy matrix Cijj = ajbj/ (Xi +Vy;j). Input: a, b, X, and y defining Cj; =
aib;j/ (Xi +yj), and target size & of con-eigenvalue. Output: correctly pivoted vectors a, b, X, and y,

truncation size m, and m x n permutation matrix P

(a, b, X,y,P, m) « Pivot_Order(a,b, x,y,0)

Form vector



CON-EIGENVALUE
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£ (_1)L X0 (L) 2minx (_1)L ! (L) 21minx
fn = hn +W f (X)e dX + W f (X)e dX,
Tt T

L 1)p
Z ( 2n|nx0|:(p 1) (XO) + F(p 1)( ))

(2min)P

F® (x) = O (x*) —F®) (x ) and X*, X~ indicate directional limits. As the first step in construct-
ing a near) optimal rational approxunatlon to F, we subtract the leading L terms of the asymptotic

expansion of f, and consider g
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FIGURE 4.2. a) Relative error in the jth con-eigenvalue, ‘)\j - 5\:‘ /|Aj|, as a func-

tion of the index j. b) The error in the jth con-eigenvector, ||zj — Zj[, 7/ [|zj||,,
zj =Z (:,j), as a function of the index j.

where the condition number K (L) = |[L|| |[L7| is typically small. The estimates in Theorems 6-7
also depend on

5.2) ba (L) = [[IL7Y (prwpz (L) +vk® (L)),

where p, W, and Y are “pivot growth” factors associated with the QR factorization see Section 7.8),

and the factor v is associated with the one-sided Jacobi algorithm see 7.12)).

Remark. There are simple formulas for Ljj and (L_l)ij [10]) in terms of the parameters aj, by, X;
and Yyj defining the Cauchy matrix C, and it is possible that the bounds below may be improved by
using this additional structure.

Theorem 5. Suppose i20Td(t(J2.01a(i20Td(t(J27Td(t(J27Tp)3TJI2Td)3TJI2Tdcobi) T31.2m247.4243.5152722.71425.5m,
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depend only on the well-conditioned matrix L and, in particular, are independent of the exponen-
tially decaying diagonal matrix D), they still scale like k® (L); the bounds on the con-eigenvalues are
better—they scale like k3(L). However, in practice Algorithm 4 achieves nearly full precision for all
the con-eigenvalues and con-eigenvectors. While it is likely that better estimates can be obtained,
those presented here elucidate the basic mechanism behind the high accuracy that we observe in our
experiments.

6. DISCUSSION: COMPARISON WITH RELATED APPROACHES FOR CONSTRUCTING OPTIMAL
RATIONAL APPROXIMATIONS

Numerical approaches for finding near optimal rational approximations originate in theoretical
results of Adamyan, Arov, and Krein [1, 2, B]. In particular, given a periodic function f (eZmX) €
L>(0,1), AAK theory yields an optimal “rational-like” approximation ry (e2nix)7

o + a1z + axz% + ...

6.1 rM Z)= [l
) () (Z—Zl)...(Z—ZM)
constructed from the left and right singular vectors corresponding to the Mth singular value, opm,

of the infinite Hankel matrix Hjj = f(i+j—1), i,j =1,2,.... The numerator of ry (z) in 6.1)
is analytic in the unit disk. The approximation error satisfies

Gl <1,

max
X
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high degree polynomials determined at the SVD step) may be sensitive to perturbations in their
coefficients. However, when limited to approximating smooth functions, these “truncated Hankel”
methods can yield surprisingly high accuracy since the errors in the poles may be compensated by
the residues. As far as we are aware, truncated Hankel methods for constructing optimal rational
approximations for functions with singularities generally do not achieve approximation errors better
than ~ 1074, In contrast, in Section 3.1 we show that the reduction algorithm approximates
piecewise smooth functions with errors close to machine precision.

We also note that the results in [27] illustrated in Section 3.2) demonstrate an effective numerical
calculus based on the reduction algorithm, capable of computing highly accurate solutions to viscous
Burgers’ equation for viscosity as small as 10~°. These solutions exhibit moving transitions regions
of width =~ 107°, and computing them with high accuracy over long time intervals is a nontrivial
task for any numerical method. The con-eigenvalue algorithm of this paper is critical to the high
accuracy and efficiency of this numerical calculus.

7. APPENDIX: BACKGROUND ON ALGORITHMS FOR HIGH RELATIVE ACCURACY

Here we provide necessary background on computing highly accurate SVDs. Although the results
we need in [20, 2@, 17, B4, 15, 29] are only stated there for real-valued matrices, they carry over to
complex-valued matrices with minor modifications and are formulated as such.

7.1. Accurate SVDs of matrices with rank-revealing decompositions. According to the
usual perturbation theory for the SVD see e.g. [12]), perturbations 0A of a matrix A change the ith
singular value 0j by 80 and corresponding unit eigenvector Uj by duj, where assuming for simplicity
that 0j is simple),

10A]
absgap;’

Therefore, small perturbations in the elements of A may lead to large relative changes in the small
singular values and the associated singular vectors. Eoreover, since standard algorithms compute an
SVD of some nearby matrix A+ 0A, where [|DA| 7 ||A]| = O (), the perturbation bound 7.1) shows
that the computed small singular values and corresponding singular vectors will be inaccurate.

In contrast, the authors in [17] show that, for many structured matrices, the ith singular value
0j < 01 and the associated singular vector are robust with respect to small perturbations of the
matrix that preserve its underlying structure. The sensitivity is instead governed by the ith relative

gap

7.1) [dai| 701 < ||dA||, ||6ui] < absgap; = n;tm |oi —aj|/0y.
i7]

_ . loi —gj
relgap; = min ———.
i#Zj Oj + Oj
Eore precisely, let us consider the class of matrices for which a rank-revealing decomposition A =
XDY * is available and may be computed accurately. Here X and Y are n x m well-conditioned ma-
trices and D is an m x m diagonal matrix that contains any possible ill-conditioning of 'E‘hﬂug[ 0)2Lq 166) I TR FFLI 12) T
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[15]). ERoreover, small perturbations of such matrices that preserve their underlying structure lead
to small perturbations in the rank-revealing factors and, therefore, small relative perturbations of
the singular values.
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the matrix A is pre-pivoted). Assume that the matrix P1 AP, may be factored as P1AP, = D1BDy,
where D; and D, are diagonal matrices, and that the Householder algorithm, applied to the row-
scaled matrix C = D1B, produces intermediate matrices C® with columns c}k). Finally, define the
quantities p, 4, and Y by

maxj k }cg() Hc}k) (K : m)H

7.10) p = max M = max max

_ I I | max;j [Cij
i maxj |Cij| ' k  j>k Hcﬁk) (k . m)H' 1Sisn max;j |Cij| .

i<k<n

The above quantities measure the extent to which the Householder algorithm preserves the scaling
in the intermediate matrices A®  and are
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and
7.12) v =p(M,n)vg,

where p (M, n) is proportional to M - N2, and vg in defined in 7.11). Then we have the following
result from [20]






