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Abstra
t. The need to 
ompute small 
on-eigenvalues and the asso
iated 
on-eigenve
tors of

positive-de�nite Cau
hy matri
es naturally arises when 
onstru
ting rational approximations with

a (near) optimally small L∞
error. Spe
i�
ally, given a rational fun
tion with n poles in the unit

disk, a rational approximation with m ≪ n poles in the unit disk may be obtained from the mth


on-eigenve
tor of an n × n Cau
hy matrix, where the asso
iated 
on-eigenvalue λm > 0 gives

the approximation error in the L∞
norm. Unfortunately, standard algorithms do not a

urately


ompute small 
on-eigenvalues (and the asso
iated 
on-eigenve
tors) and, in parti
ular, yield few

or no 
orre
t digits for 
on-eigenvalues smaller than the ma
hine roundo�. We develop a fast

and a

urate algorithm for 
omputing 
on-eigenvalues and 
on-eigenve
tors of positive-de�nite

Cau
hy matri
es, yielding even the tiniest 
on-eigenvalues with high relative a

ura
y. The algo-

rithm 
omputes the mth 
on-eigenvalue in O
(

m2n
)

operations and, sin
e the 
on-eigenvalues of

positive-de�nite Cau
hy matri
es de
ay exponentially fast, we obtain (near) optimal rational ap-

proximations in O

(

n
(

log δ−1
)

2
)

operations, where δ is the approximation error in the L∞
norm.

We provide error bounds demonstrating high relative a

ura
y of the 
omputed 
on-eigenvalues

and the high a

ura
y of the unit 
on-eigenve
tors. We also provide examples of using the al-

gorithm to 
ompute (near) optimal rational approximations of fun
tions with singularities and

sharp transitions, where approximation errors 
lose to ma
hine roundo� are obtained. Finally, we

present numeri
al tests on random (
omplex-valued) Cau
hy matri
es to show that the algorithm


omputes all the 
on-eigenvalues and 
on-eigenve
tors with nearly full pre
ision.

1. Introdu
tion

We present an algorithm for 
omputing with high relative a

ura
y the 
on-eigenvalue de
ompo-

sition of positive-de�nite Cau
hy matri
es,

(1.1) Cum = λm
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the error 
lose to λm. The form (1.2) ensures that f
(
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positive-de�nite matri
es [20℄, s
aled diagonally dominant matri
es [4℄, totally positive matri
es

[31℄, 
ertain inde�nite matri
es [36℄, and Cau
hy matri
es (as well as, more generally, matri
es with

displa
ement rank one) [15℄. For su
h matri
es, re
ent algorithmi
 advan
es (see [24, 25℄) make the


ost of a
hieving high relative a

ura
y 
omparable to that of alternative (and less a

urate) SVD

methods.

The 
on-eigenvalue algorithm 
onsidered here is based on 
omputing the eigenvalue de
omposition

of the produ
t, CC, of positive-de�nite Cau
hy matri
es C and C, and is similar to the algorithm in

[17℄ for the generalized eigenvalue de
omposition, as well as the algorithm in [23℄ for the produ
t SVD

de
omposition. We also rely on the algorithm in [15℄ for 
omputing, with high relative a

ura
y,

the Cholesky de
omposition (with 
omplete pivoting) C = (PL)D2 (PL)
∗
of a positive-de�nite

Cau
hy matrix C. However, sin
e we are interested in 
omputing only 
on-eigenvalues of some

approximate size δ, we stop
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paper with other algorithms in the literature for 
onstru
ting optimal rational approximations. For

the 
onvenien
e of the reader we also provide relevant ba
kground material in Se
tion 7.

2. A

urate 
on-eigenvalue de
omposition (an informal derivation)

2.1. Constructing optimal rational approximations via a con-eigenvalue problem. In or-

der to motivate our 
on-eigenvalue algorithm, let us explain how the a

urate 
omputation of small


on-eigenvalues and asso
iated 
on-eigenve
tors allows us to 
onstru
t optimal rational approxima-

tions.

We 
onsider an algorithm to �nd a rational approximation r(e2πix) to f(e2πix) in (1.2) with a

spe
i�ed number of poles and with a (nearly) optimally small error in the L∞
-norm. The algorithm

is based on a theorem of Adamyan, Arov, and Krein (referred to below as the AAK Theorem) [3℄.

We note that the formulation given below in terms of a 
on-eigenvalue problem is similar to the

approa
h taken in [14℄ and [6℄.

Given a target a

ura
y δ for the error in the L∞
-norm, the steps for 
omputing the rational

approximant r(z),

r(z) =
m∑

i=1

βi
z − ηi

+
m∑

i=1

βiz

1− ηiz
+ α0,

are as follows:

(1) Compute a 
on-eigenvalue 0 < λm ≤ δ and 
orresponding 
on-eigenve
tor u of the Cau
hy

matrix Cij = Cij(γi, αj),

(2.1) Cu = λmu, where u =




u1
u2
.

.

.

un


 , Cij =

aibj
xi + yj

, i, j = 1, . . . , n,

and ai =
√
αi/γi, bj =

√
αj , xi = γ−1

i , yj = −γj . The 
on-eigenvalues of C are labeled in

non-in
reasing order, λ1 ≥ λ2 ≥ · · · ≥ λn.
(2) Find the (exa
tly) m (exa
tly)
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Remark 1. In pra
ti
e, �nding the new poles ηi using the formula for v(z) in (2.2) is ill-advised,

sin
e evaluating v(z) in this form 
ould result in loss of signi�
ant digits through 
atastrophi



an
ellation. Indeed, it turns out (see [6, Se
tion 6℄ and [27℄) that the values of the 
on-eigenve
tor


omponents satisfy ui =
√
αiv (γi), i = 1, . . . , n. It then follows that the sum (2.2) must su�er


an
ellation of about log10
(
λ−1
m

)
digits if v (γi) and v (z) are of 
omparable size (note that λm


ontrols the approximation error and, thus, is ne
essarily small). On the other hand, the fun
tion

values v (γi) = ui/
√
αi, i = 1, . . . , n, along with the n poles 1/γi of v(z), 
ompletely determine (2.2).

Sin
e the poles γi of f(z) are often 
lose to the poles ηi of r(z), we have observed that evaluating

v(z) by using rational interpolation via 
ontinued fra
tions with the known values v (γi) allows us
to obtain the new poles ηi with nearly full pre
ision. In parti
ular, an approximation ṽ(z) to v(z) is

omputed via 
ontinued fra
tions,

(2.4) ṽ(z) =
a1

1 + a2 (z − γ1) / (1 + a3 (z − γ2) / (1 + · · · ))
,

where the 
oe�
ients aj are determined from the interpolation 
onditions ṽ(γi) = v (γi). If the poles
γi are given in the form γi = exp (−τi), we �nd that Newton's method on ṽ (exp (−η)) yields the
new poles ηi = exp (−ζi) with nearly full relative a

ura
y even when Re (ζ(

new p oles
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Algorithm 1 ConEig_RRD (X,D) 
omputes a

urate 
on-eigenvalue de
omposition of XD2X∗
.

Input: rank-revealing fa
tors X and D (of dimensions n ×m and m ×m), where the diagonal of

D > 0 is de
reasing. Output: m 
on-eigenvalues/
on-eigenve
tors of XDX∗
, 
ontained in Σ and T .

(Σ, T )← ConEig_RRD (X,D)

1. Form G = D (XTX)D
2. Compute QR fa
tors (Q,R)← Householder_QR of G (G =
QR), with optional pivoting (see Se
tion 7.3)

3. Compute the SVD fa
tors (Ul,Σ, Ur)← Ja
obi (R) of R (R =
UlΣU

∗
r ), using one-sided Ja
obi, applied from the left (see Se
tion 7.4)

4. Compute R1 = D−1RD−1
, X1 = D−1UlΣ

1/2
, and Y1 =

R−1
1 X1 (see (2.6) below)

5. Form the matrix of 
on-eigenve
tors T =
XY1, and output 
on-eigenvalues Σ and 
on-eigenve
tors T

Importantly, for Cau
hy matri
es (A = C) the elements of D de
ay exponentially fast, and it

would appear that 
omputing the 
on-eigenve
tors zi = XDvi/Σ
1/2
ii might lead to wildly ina

urate

results even if the right singular ve
tor of G, vi, is 
omputed a

urately. However, as we show

in Se
tion 5, Algorithm 1 a
hieves high a

ura
y despite the extreme ill-
onditioning of D. The

key reason is that the right singular ve
tor vi, 
orresponding to the singular value Σii, s
ales like

|vi (j)| ≤ cV min
(
Djj/Σ

1/2
ii ,Σ

1/2
ii /Djj

)
, and the 
omputed singular ve
tor v̂i is a

urate relative to

the s
aling in D and Σ in the sense that

|vi (j)− v̂i (j)| ≤ min

{
Djj√
Σii

,

√
Σii
Djj

}
O (ǫ) .

For Cau
hy matri
es, the quantity min
(
Djj/Σ

1/2
ii ,Σ

1/2
ii /Djj

)
de
reases exponentially fast away

from the diagonal i = j.
Let us give an informal explanation of the reasons why Algorithm 1 yields a

urate results. As

dis
ussed in Se
tion 7.3, the QR Householder algorithm 
omputes an a

urate rank-revealing de
om-

position of G = QR. It turns out (see the online version [28, Lemma 11℄) that R may be fa
tored as

R = D2R0, where R0 is graded relative to D in the sense that

∥∥DR0D
−1
∥∥
and

∥∥DR−1
0 D−1

∥∥
are not

too large, as long as the n leading prin
ipal minors of XTX are well-
onditioned. Therefore, from the

dis
ussion in Se
tion 7.4 (see in parti
ular Theorem 10), the one-sided Ja
obi algorithm 
omputes

the ith left singular ve
tor ui of R a

urately relative to the s
aling min
{
Djj/Σ

1/2
ii ,Σ

1/2
ii /Djj

}
. It

follows that D−1uiΣ
1/2
ii may also be 
omputed a

urately. Finally, sin
e the ith right singular ve
tor

vi of R (and G) satis�es

DviΣ
−1/2
ii = DR−1uiΣ

1/2
ii

=
(
DR0D

−1
)−1

(
D−1uiΣ

1/2
ii

)
,(2.6)

the 
on-eigenve
tor zi = X
(
DviΣ

−1/2
ii

)
may be 
omputed a

urately, as long as DR0D

−1
is 
om-

puted a

urately and is well-
onditioned (we show this is the 
ase if n leading prin
ipal minors of

XTX are 398 0 Td
[(j)1.46911℄TJ
I9O3℄TJ
5082
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a

ura
y. As explained in the next se
tion, γ−1
j −γi may be a

urately 
omputed
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Algorithm 2 Pivot_Order (a, b, x, y, δ) pre-
omputes pivot order for Cholesky fa
torization of n×
n positive-de�nite Cau
hy matrix Cij = aibj/ (xi + yj) . Input: a, b, x, and y de�ning Cij =
aibj/ (xi + yj), and target size δ of 
on-eigenvalue. Output: 
orre
tly pivoted ve
tors a, b, x, and y,

trun
ation size m, and m× n permutation matrix P̃(
a, b, x, y, P̃ ,m

)
← Pivot_Order (a, b, x, y, δ)

Form ve
tor



CON-EIGENVALUE
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f̂n = hn +
(−1)L

(2πin)L

ˆ x0

0

f (L)(x)e2πinxdx+
(−1)L

(2πin)L

ˆ 1

x0

f (L)(x)e2πinxdx,

where

hn =

L∑

p=1

(−1)p

(2πin)
p

(
e2πinx0F (p−1) (x0) + F

(p−1) (0)
)
,

F (p) (x) = f (p) (x+)−f (p) (x−) and x+, x− indi
ate dire
tional limits. As the �rst step in 
onstru
t-

ing a (near) optimal rational approximation to f , we subtra
t the leading L terms of the asymptoti


expansion of f̂n and 
onsider g
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(a)
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(b)
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Figure 4.2. (a) Relative error in the jth 
on-eigenvalue,

∣∣∣λj − λ̂j
∣∣∣ / |λj |, as a fun
-

tion of the index j. (b) The error in the jth 
on-eigenve
tor, ‖zj − ẑj‖2 / ‖zj‖2,
zj = Z (:, j), as a fun
tion of the index j.

where the 
ondition number κ (L) = ‖L‖
∥∥L−1

∥∥
is typi
ally small. The estimates in Theorems 6-7

also depend on

(5.2) µ3 (L) =
∥∥L−1

∥∥ (ρµψµ2 (L) + νκ3 (L)
)
,

where ρ, µ, and ψ are �pivot growth� fa
tors asso
iated with the QR fa
torization (see Se
tion 7.3),

and the fa
tor ν is asso
iated with the one-sided Ja
obi algorithm (see (7.12)).

Remark. There are simple formulas for Lij and
(
L−1

)
ij
([10℄) in terms of the parameters ai, bj , xi

and yj de�ning the Cau
hy matrix C, and it is possible that the bounds below may be improved by

using this additional stru
ture.

Theorem 5. Suppose i2 0 Td
(t(J
28.6801 9a(i2 0 Td
(t(J
287 Td
(t(J

287 Tp)3]TJ
62Td
)3]TJ
62Td9
obi)Tj
31.26 m
2647.42 4638.85 l
S
2722.71 4625.58 m
2722.71 4638.85 l
S
2797.99 4625.58 m
2797.962.438(=tTd
(j)T6 -119.0801 0 Td
(i27=tTd
(jsem)ve-25.58t87 Tp))19lo)1999.43.2hy 0 Td
(fa
tor)Tj
/f
1 0 0 -1 251.04 277.2 Tm
(,)Tj
6 4584 l
2464 l
19.0801 0 T74 0 Td
[(L)-6.56505]TJ
10R142 9.96269.23984 0 Td
[(()2.55961(:)]TJ
/R14142 9.96269.01 0 T74 0 Td
[(L)-6.56505]TJ
)Tj
18.11
6.83984 329
[(()2.55961(:)]TJ
/50 9.96264 Tf
3f
1 0 0 -1.12 Tf
1 23f
1 0 0 -1 .12 Tf
1 48f
1 0 0 -1.12 Tf
1 38Tf
1 0 0 Tm0 Td
[(L)-6.56505]TJ
3/R104 2 9.96264 Tf
6.329
[(()t(J
28.6801 9493]TJ
/R1443 l
S
.12 Tf.58 m
277y)]TJ
-46S
2797.99 4d
(i27=tT72(er.12bi27=bi)3y)]27=bi)3yd
(this)T2 0 Td
(thato0 -1 2516.761 320.76 Tm
(are)Tj2443 l
S
.12 T~J
/R1499984 4.2 Td
[(�)-2.7691o)-
/R142264 Tf
3f
1 0 0 -10 Td
[(L)-6.56505]TJ
8
/R148 9.9626423984 0 Td
[(()2.55961(:)]TJ
/R14142 9.96269.f
1 0 0 -10 Td
[(L)-6.56505]TJ
46 9.96264 Tf
697385 Tf
11.2801 4.2 Td
[(3)1.1)Tj
17.1602 0 T�
1  Td7=b.f
1 0 0 -10 Td
[t(J
28.6801 9493]TJ
/7.6299.943 l
S
.1263984 -1.46.761 320.76 Tm
(are)222719436 0 Td
[(a~3984 0 Td
[(k)-5.8887]TJ
/R150J
/R19 666 6.97385 Tf

1 0 0193759 395.52 Tm
(,)Tj
6.76227]TJ9.9626423984 0 Td
[(()2.55961(:)]TJ
/R14142 9.96269.
1 0 0193759 395.52 Tm
(,)Tj
6.64661]TJ64 Tf
697385 Tf
11.2801 4.2 Td
[(3)1.1)Tj
17.1602 0 T�
1  Td7=b.
1 0 0193759 395t(J
28.6801 9493]TJ
/72 Td9.943 l
S
.1263984 -1.4-1.43984 Td
[(i)8.23389 l
S1443 l
S
.12 T
1 0 0 -1 90 277.)-6.56505]TJ
8
5.96264 Tf
6.23984 0 Td
[(()2.55961(:)]TJ
/R14142 9.96269.
1 0 0 -1 90 277.)-6.56505]TJ
7 9.96264 Tf
6.97385 Tf
11.2801 4.2 Td
[(3)1.1(:
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(a)
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(a)
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depend only on the well-
onditioned matrix L (and, in parti
ular, are independent of the exponen-

tially de
aying diagonal matrix D), they still s
ale like κ9 (L); the bounds on the 
on-eigenvalues are

better�they s
ale like κ3(L). However, in pra
ti
e Algorithm 4 a
hieves nearly full pre
ision for all

the 
on-eigenvalues and 
on-eigenve
tors. While it is likely that better estimates 
an be obtained,

those presented here elu
idate the basi
 me
hanism behind the high a

ura
y that we observe in our

experiments.

6. Dis
ussion: 
omparison with related approa
hes for 
onstru
ting optimal

rational approximations

Numeri
al approa
hes for �nding near optimal rational approximations originate in theoreti
al

results of Adamyan, Arov, and Krein [1, 2, 3℄. In parti
ular, given a periodi
 fun
tion f
(
e2πix

)
∈

L∞(0, 1), AAK theory yields an optimal �rational-like� approximation rM
(
e2πix

)
,

(6.1) rM (z) =
a0 + a1z + a2z

2 + . . .

(z − ζ1) . . . (z − ζM )
, |ζj | < 1,


onstru
ted from the left and right singular ve
tors 
orresponding to the Mth singular value, σM ,

of the in�nite Hankel matrix Hij = f̂ (i+ j − 1) , i, j = 1, 2, . . .. The numerator of rM (z) in (6.1)

is analyti
 in the unit disk. The approximation error satis�es

max
x
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high degree polynomials (determined at the SVD step) may be sensitive to perturbations in their


oe�
ients. However, when limited to approximating smooth fun
tions, these �trun
ated Hankel�

methods 
an yield surprisingly high a

ura
y sin
e the errors in the poles may be 
ompensated by

the residues. As far as we are aware, trun
ated Hankel methods for 
onstru
ting optimal rational

approximations for fun
tions with singularities generally do not a
hieve approximation errors better

than ≈ 10−4
. In 
ontrast, in Se
tion 3.1 we show that the redu
tion algorithm approximates

pie
ewise smooth fun
tions with errors 
lose to ma
hine pre
ision.

We also note that the results in [27℄ (illustrated in Se
tion 3.2) demonstrate an e�e
tive numeri
al


al
ulus based on the redu
tion algorithm, 
apable of 
omputing highly a

urate solutions to vis
ous

Burgers' equation for vis
osity as small as 10−5
. These solutions exhibit moving transitions regions

of width ≈ 10−5
, and 
omputing them with high a

ura
y over long time intervals is a nontrivial

task for any numeri
al method. The 
on-eigenvalue algorithm of this paper is 
riti
al to the high

a

ura
y and e�
ien
y of this numeri
al 
al
ulus.

7. Appendix: ba
kground on algorithms for high relative a

ura
y

Here we provide ne
essary ba
kground on 
omputing highly a

urate SVDs. Although the results

we need in [20, 33, 17, 34, 15, 29℄ are only stated there for real-valued matri
es, they 
arry over to


omplex-valued matri
es with minor modi�
ations and are formulated as su
h.

7.1. Accurate SVDs of matrices with rank-revealing decompositions. A

ording to the

usual perturbation theory for the SVD (see e.g. [12℄), perturbations δA of a matrix A 
hange the ith
singular value σi by δσi and 
orresponding unit eigenve
tor ui by δui, where (assuming for simpli
ity

that σi is simple),

(7.1) |δσi| /σ1 ≤ ‖δA‖ , ‖δui‖ ≤
‖δA‖

absgapi

, absgapi = min
i6=j
|σi − σj | /σ1.

Therefore, small perturbations in the elements of A may lead to large relative 
hanges in the small

singular values and the asso
iated singular ve
tors. Moreover, sin
e standard algorithms 
ompute an

SVD of some nearby matrix A+ δA, where ‖δA‖ / ‖A‖ = O (ǫ), the perturbation bound (7.1) shows

that the 
omputed small singular values and 
orresponding singular ve
tors will be ina

urate.

In 
ontrast, the authors in [17℄ show that, for many stru
tured matri
es, the ith singular value

σi ≪ σ1 and the asso
iated singular ve
tor are robust with respe
t to small perturbations of the

matrix that preserve its underlying stru
ture. The sensitivity is instead governed by the ith relative

gap

relgapi = min
i6=j

|σi − σj |
σi + σj

.

More pre
isely, let us 
onsider the 
lass of matri
es for whi
h a rank-revealing de
omposition A =
XDY ∗

is available and may be 
omputed a

urately. Here X and Y are n×m well-
onditioned ma-

tri
es andD is anm×m diagonal matrix that 
ontains any possible ill-
onditioning of Atnij
38
[(0).s Td
(let)Tj
13..44 Tm
(is)Tj
9.11999 0 Td
[(sho)1n14(etter)℄1Tj
-418.24 0 Td
(in)Tj
11.7602 0 Td
[([67(℄,999.31(y)℄TJ
30.60 Td8he)Tj
17.4 0 Td
[(p)-2001.34(erturbationx)Tj
31.5608 0 Td
(of)Tj
/R142 9.96264 Tf
Tf
0 -1 2657.8 238.44 Tm
[(A)3.21024℄TJ
/R146 9.9626d)Tj
19.4398 0 Td
[(=)-5.92546℄TJ
/R142 9.9
(of)Tj
10.68 -12 Td
[(15-87.4121(64.32 Tm
[(Y)1.83737℄TJ
/R29 6.97385℄TJ
25.5602 3.6 Td
(�)Tj
/R104 0.12 Tf
12529.64 2657.8 2302 0 Td
(thad)Tj
48.7198 0 Td
(ih)Tj
13.0808 0 Td
(o)℄TJ
32.4 0 Td
(the)Tj
17.282 0 Tdd
(Here)Tj
/R142 9.96264 Tf
1 057.8 2657.8 238.44 Tm
[(A)3.21024℄TJ
/R146 9.99264 Tf
6.7199284 Td
[(+)-5.92546℄TJ
/R142 9.96264 Tf
9.96016 0 Td
[(�)-37.7999(A)3.21024℄TJ
/R146 9.96for)Tj
15.239892 T0 00136 0 Td
[(()2.56084℄TJ
/R142 9.9(for)Tj
14.519932 Tm
[(X)-3.10486℄TJ
/R146 9.9626e)Tj
17.280184 Td
[(+)-5.92546℄TJ
/R142 9.96264 Tf
9.96016 0 Td
89(A932 Tm
[241-3.10486℄TJ
/R146 9.96264 Tf
13.9199)0 T70. Tf6 0 Td
[32i)8.23389℄TJ
/R142 9.99264 Tf
13.919944 Tm
[2(A)3.21024℄TJ
/R146 9.96266+
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[15℄). Moreover, small perturbations of su
h matri
es that preserve their underlying stru
ture lead

to small perturbations in the rank-revealing fa
tors and, therefore, small relative perturbations of

the singular values.
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the matrix A is pre-pivoted). Assume that the matrix P1AP2 may be fa
tored as P1AP2 = D1BD2,

where D1 and D2 are diagonal matri
es, and that the Householder algorithm, applied to the row-

s
aled matrix C = D1B, produ
es intermediate matri
es C(k)
with 
olumns c

(k)
j . Finally, de�ne the

quantities ρ, µ, and ψ by

(7.10) ρ = max
i

maxj,k

∣∣∣c(k)ij
∣∣∣

maxj |cij |
, µ = max

k
max
j≥k

∥∥∥c(k)j (k : m)
∥∥∥

∥∥∥c(k)k (k : m)
∥∥∥
, ψ = max

1≤i≤n

i≤k≤n

maxj |ckj |
maxj |cij |

.

The above quantities measure the extent to whi
h the Householder algorithm preserves the s
aling

in the intermediate matri
es A(k)
, and are
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and

(7.12) ν = ρ (M,n) ν20 ,

where ρ (M,n) is proportional to M · n3/2, and ν0 in de�ned in (7.11). Then we have the following

result from [33℄




