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H igher-order networks1–4 are attracting increasing atten-
tion as they are able to capture the many-body interac-
tions of complex systems ranging from brain to social

networks. Simplicial complexes are higher-order networks that
encode the network geometry and topology of real datasets. Using
simplicial complexes allows the network scientist to formulate
new mathematical frameworks for mining data5–10 and for
understanding these generalized network structures revealing the
underlying deep physical mechanisms for emergent
geometry11–15 and for higher-order dynamics16–33. In particular,
this very vibrant research activity is relevant in neuroscience to
analyze real brain data and its profound relation to
dynamics1,6,15,34–37 and in the study of biological transport
networks10,38.

In networks, dynamical processes are typically defined over signals
associated to the nodes of the network. In particular, the Kuramoto
model39–43



normal distribution ωi & N ðΩ0; 1=τ0Þ. In absence of any



by the model is different. In this case the dynamical equations
are taken to be

_θ ¼ ω ' σR down
1 B½1$ sinðB>

½1$θÞ; ð16Þ

_ϕ ¼ ~ω ' σR0R
up
1 B>

½1$ sinðB½1$ϕÞ

'σR down
1 B½2$ sinðB>

½2$ϕÞ:
ð17Þ

For Model NLT the projected dynamics for ϕ[−] and for ϕ[+]

obeys

_ϕ
½'$ ¼ B½1$~ω ' σR0R

up
1 L½0$ sinϕ½'$; ð18Þ

_ϕ
½þ$ ¼ B>

½2$~ω ' σR down
1 L down

½2$ sinϕ½þ$: ð19Þ

Therefore, as in Model NL, the dynamics of the projection ϕ[−]

of the phases ϕ associated to the links [Eq. (18





zero. In fact

∑
N

i¼1
ω̂i ¼ 1T

"







numerical solution of Eq. (59) reveals the following picture: for
low values of σ, only the incoherent solution R0 ¼ R down

1 ¼ 0
exists. At a positive value of σ, two solutions of Eq. (59) appear at
a bifurcation point, with the upper solution corresponding to a
stable synchronized state and the lower solution to an unstable
synchronized solution. For larger values of σ, the values of R0 and
R down

1 corresponding to the upper solution approach one (full
phase synchronization), while those for the lower solution
approach zero asymptotically, thus indicating that the incoherent
state never loses stability. Indeed, it can be easily checked (see
“Methods” for details) that for large σ the unstable solution of Eq.
(59) has asymptotic behavior

R0 ¼ σ'2J0;

R down
1 ¼ σ'1J1;



topologies can sustain a non-trivial hysteresis loop we expand Eq.
(57) for 0 < R0 ≪ 1, 0 < R̂0 ) 1, and 0 < R down

1 ) 1 under the
hypothesis that the distributions g(ω) and Giðω̂Þ are symmetric
and unimodal. Under these hypothesis it is easy to show that Eq.
(57) predict an unstable solution in which R0 and R down

1 scale
with σ according to

R0 ¼ σ'2J0;

R down
1 ¼ σ'1J1;

ð64Þ

with J0 and J1 constants given by

J0 ¼ kh i
π
2

k2& '
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:

ð65Þ

As long as the network does not have vanishing J0 and J1 the
unstable branch converges to the trivial solution R0 ¼ R down

1 only
in the limit σ →∞. This happens for instance for Gaussian
distribution of the internal frequency of the links and converging
second moment



follows that the incidence matrices obey

B½n$B½nþ1$ ¼ 0;B>
½nþ1$B

>
½n$ ¼ 0; ð73Þ

for any n > 0.

Higher-order Laplacians. Using the incidence matrices it is natural to generalize
the definition of the graph Laplacian

L½0$ ¼ B½1$B
>
½1$ ð74Þ

to the higher-order Laplacian L[n] (also called combinatorial Laplacians)17,19,60 that
can be represented as a N[n] × N[n] matrix given by

L½n$ ¼ L down
½n$ þ L up

½n$ ð75Þ

with

L down
½n$ ¼ B>

½n$B½n$;

L up
½n$ ¼ B½nþ1$B

>
½nþ1$;

ð76Þ

for n > 0. The higher-order Laplacian can be proven to be independent of the
orientation of the simplices as long as the simplicial complex has an orientation
induced by a labeling of the nodes.
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