


VIRKAR, RESTREPO, AND MEISS PHYSICAL REVIEW E92, 052802 (2015)

adjacency matrix is a key quantity in determining the onset of
synchronization. Finally, we quantify the maximum achievable
synchrony for a given network structure and Þnd that this
maximum value depends only weakly on the heterogeneity of
the networkÕs degree distribution.

The rest of the paper is organized as follows. After
describing the model and its governing dynamical equations
in Sec. II , we discuss the linear stability of the incoherent
solution in Sec.III . We use this analysis to Þnd the critical
value of the coupling constant for the onset of synchronization.
We then study the synchronized state in Sec.IV, obtaining a
set of self-consistent equations for the local order parameters
that determines the global order parameter as a function of
the coupling strength. Approximate solutions of this set are
obtained near the onset of synchrony and in the strong coupling
limit. Finally, we discuss our results in Sec.V.

II. NETWORK HMF MODEL

In the original HMF model, and in most subsequent studies
[1Ð4], the rotors in (1) were assumed to have the same moments
of inertia, I n � 1, and the coupling was assumed to be all-
to-all with equal strength,Amn � 1. While such a simpliÞed
setting provides many insights, interactions are rarely uniform
and all-to-all in practice. For example, the HMF model is a
simpliÞed model for ann-body gravitational system in one
spatial dimension with periodic boundary conditions, keeping
only one harmonic of the potential [6,8]; in this case, the
interaction strength should be proportional to the product of the
particle masses and decay with the separation of the particles.

With this motivation we allow for a general adjacency
matrix,A, in (1), but simplify by settingI n � 1. The resulting
dynamical system is

ú� n = pn, (2)

úpn =
K
N

N�

m= 1

Anm sin(� m Š � n). (3)

As is usual, it is convenient to deÞne order parameters to
quantify synchronization. When the network is heterogeneous,
one can deÞne a set of real, local order and phase parameters,
{(Rn,� n) : n = 1, . . . N }, by

Rnei� n =
1
N

N�

m= 1

Anmei� m, (4)

that characterize the coherence of inputs to a given node. Using
these, (3) becomes

úpn = KRn sin(� n Š � n). (5)

The overall synchrony of rotors can be measured by a global
order parameter [17]

R =
1

� d�

N�

n= 1

Rn. (6)

Here� . . . � denotes the average over nodes,�
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average:

� f � t � � f � gB �
� 2�

0

� �

Š�
f ( ø� n, øpn)gB( ø� n, øpn; rn) d øpn d ø� n.

(23)

Here gB is the Boltzmann distribution for the single-rotor
energy

gB( ø� , øp; r ) =
� 1/ 2

(2� )3/ 2I0(K�r )
eŠ� ( øp2/ 2ŠKr cos(ø� )), (24)

for an inverse temperature� that must be determined. The
Bessel function, I0, in the denominator normalizes the distri-
bution:


 2�
0


 �
Š� gB( ø� , øp; r ) d øp d ø� = 1. For this distribution,

the mean-square momentum (in this case, the variance oføp) is


 2 =
� �

Š�

� 2�

0
øp2 gB( øp, ø� ; r ) d ø� d øp = � Š1, (25)

and the mean potential energy is proportional to
� �

Š�

� 2�

0
cos(ø� ) gB( ø� , øp; r ) d ø� d øp = v(K�r ), (26)

where we introduce the notation

v(x) �
I1(x)
I0(x)

, (27)

and I1
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where the superscripts indicate the order in the perturbative
expansion and we have anticipated already thatrn � (K )1/ 2

(see, however, the last paragraph of this section). We have
included only terms up to the order necessary to determine
r (1)

n in the analysis that follows. Inserting these in (34) and
expanding in powers of� we obtain at zeroth order,

µ (0) = 
 2
0 ,

as expected. The next terms, of order� 1/ 2, imply
�

I Š
Kc

2
 2
0 N

A
�

r (1) = 0,

which gives

Kc =
2
 2

0 N
�

, r (1) = Cu. (36)

Here u and � are the principal eigenvector and eigenvalue
of A, and C is a normalization constant to be determined
(as we will see, the productCu does not depend on the
normalization ofu). We have assumed that the only unstable
mode is the one corresponding to the principal eigenvector.
The gap between the real parts of the two leading eigenvalues
thus determines the range of validity of this dominant-mode
perturbative approximation. This result is in agreement with
the linear stability calculation of Sec.III [cf. (15)]. The terms
of order � 1 lead tor (2)
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