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suggested the design of orthonormal wavelet systems with vanishing moments for both
scaling and the wavelet functions. They were first constructed by Daube8haesd she
named thentoiflets

In [1] shifted vanishing moments for the scaling functibrwere used to obtaione

point quadratures
>
f.x/ fox/”.x ki (1.2)

k2z
wheref is a sufficiently smooth function on the multiresolution spegendff .xx/g are
good approximations of the coefficientsfofin the expansion.
Since in [l] both matrices and operators were considered, the pbipgsvere chosen
to bexx Dk C , where is an integer. This “shift” corresponds to the first moment of

the scaling functior, .

D x’.x/dx: (1.2)
R

Note that is not the center of mass because/
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wavelet . The key to our approach is to insist on a reasonable approximation to linear
phase only in the passband of the associated low-pasaniijter

It is well known that the properties defining coiflets can be easily described in terms of
the coefficientghyg of mg. The conditions orfhgg turn out to be dependerit4], and one
of the goals of this article is to derive a system that is free of redundant equations. To obtain
such a system, we perform a change of variablethgp via a linear transformation that
has the shift as a parameter. This defining system is partly linear and partly quadratic.
For filter lengths up to 20 the system can be explicitly solved via algebraic methods like
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We also refer to suchl as a QMF. As a consequence &f3), H satisfies the following
functional equation:

H.zH.z YCH. zH. z Y
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In terms of the symbadH , (3.1) requires that
1/j*hj DO for0 k<M; (3.3)
i

or equivalently, the factorization

M
H.z/D <%> Q.z/; (3.4)

whereQ. 1/B0.
As pointed out in the Introduction, we are interested in vanishing (shifted) moments of
the scaling function
z
M, D
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Equations 8.6) and @.8) imply that the following four conditions, valid for ak; 0
k <N, are equivalent:

z

M, D x* .x/dxD X (3.12)
ZR

M D x  [f.x/dxD yo; (3.13)

h >% H k

MWD i /fhiD o (3.14)
<

MPD  j*hD kK (3.15)

J
Therefore, imposing moment conditions for either the wavelet or the scaling functic

amounts to finding a QMM with moment conditions for its sequence of coefficients.
In particular, the first moment df, as defined in1.2), equals the derivative ¢ at one,

DH.1/:

On the other hand2(1) forcesjH .z/j 1 forz onthe unit circle. These last two properties
allow us to show that the valueshould be within the support éf. Observe that this result
is not evident sincé is not a positive function.

ProrPoOsSITION 3.2. LetH.z/ D
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1/j*h; D
jDo
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Proof. Applying the operatotxD/" (defined in the Appendix) a D 1 to the QMF
equation 2.5), or taking derivatives at D 0 in (2.2
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its values on a shifted dyadic grid:

X
p.x/D p(z—cnk>’.2”x k/:
k

Since at some scale any smooth function can be well approximated by polynomials, we
have the almost interpolating property discussed in the Introduction.
Here we see the advantage of having Hdth
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a neighborhood of D 0

H.e' /Day. /ePH-/ and 0. /Day
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FIG. 2. Comparison between the group delaysmgfand 0. Maximal coiflet for wavelet: length 18, case b
(top) and Daubechies’ least asymmetric filter of the same length (bottom).

least asymmetric filter in FigR is defined as the maximally flat filter whose phase is as
linear as possible within the whole bahd ; U.See8
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we obtain thepolyphaseequation
1 1, L.
Ho.Z/Ho.Z /C H1.Z/H1.Z /D E (7.6)

The problem of finding a solutioH of the QMF equationZ.5) is thus replaced by finding
the solutiondHg andH; of the polyphasesquation. Instead of performing two operations
on the variable in (2.5, namely z andz 1, in (7.6) we only haver 1.

8. THE CONSTRUCTION OF COIFLETS

P
Recall that we can write any polynomial QMF &3.z/ D II<_D01 hkz, where
hoh. 1B0.
We describe a system for coiflets not in termdghafy but in terms of the new variables

1 X/, k 1 X/ 1\
akD@j (J 5) hzj  and kaN,— (J T) hojca;

where0 k |,andlD %.L 2/. The transformation fronfihcg to fay; byg is linear and
parameterized by. As before, D jhj is the first moment of .

For what follows, it is more convenient to descridaeandby for arbitraryk 0, using
the operatoxD
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1 _ _ _ _
Dm.xD/”(x Ho.x/x Ho.x Y Cx = ¥Hyix/x: YPHLx Y).U

X
D . 1/fa, «akChbn b/ (8.1)
kDO
forO n L 2.
If nis odd, the previous equation is always satisfied and then, as we remarked garlier,
equations are enough to characterize a QMF of lehgth

8.2. Linear Conditions

We now discuss how to rewrite the (linear) conditiofhd) and @.2) for coiflets in terms
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8.3. A System for Coiflets

Combining 8.1) and 8.4), the system for coiflets can be written in terms of the

1 > .
EnODaannC . 1/a.n|(

kDm
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8.3.3. Coiflets with integer shifts.Coiflets for integer choices of the shift were
first computed by Daubechie8][ In all cases that we computed, coiflets with integer
shifts were always nonmaximal. In Tablewe list, for different lengthd_, the range
of possible integer shifts in0;
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An equivalent system, obtained via Grobner bases whésdreated as parameter is



200 MONZON, BEYLKIN, AND HEREMAN

function (by settinga3 D  bg). In the latter case 9(3) becomes

(
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TABLE 2
Coiflet Filters of Length 8
k hg k hg
MD3 0 0:00899863735774892 MD3 0 0:03952785122359428
ND5 1 0:02054552466216258 ND5 1 01271031281675352
D i 2 0:2202099211463259 D 2 0:5323389066059403
Case Na 3 (5701914465849665 Case Nb 3 :400002251136967
MAXIMAL 4 0:3422577968313942 MAXIMAL 4 0:005981694132267174
5 0:07306459213264614 5 0:07120132136770919
6 0:05346908061997128 6 :@ML317063874992116
7 0:02341867020984207 7 :@4095942063206933
MD3 0 01646660519380485 MD3 0 03040839480619514
ND3 1 05074101320413008 ND3 1 0414464867958699
D1 2 04435018441858542 D1 2 002524815581414562
Case la 3 0:02223039612390291 Case 1b 3 :2866053961239029
4 0:1310018441858543 BAD 4 :P872518441858542
5 0:02223039612390291 5 0:2566053961239029
6 0:02283394806195145 6 0:1165839480619514
7 0:007410132041300974 7 :(B5535132041301
MD3 0 0:01938529090153145 MD3 0 00850102909015314
ND3 1 (01854738954507657 ND3 1 01332761045492342
D2 2 05581558727045942 D2 2 02449691272954056
Case 2a 3 3810783136477028 Case 2b 3 :5876716863522972
4 0:05815587270459436 UGLY 4 :2650308727045943
5 0:06857831364770281 5 0:2251716863522971
6 0:01938529090153145 6 0:0850102909015314
7 0.002026104549234272 7 :05422389545076572
MD3 0 0:05191993211769211 M D3 0:01058006788230788
ND3 1 0:0234375 ND3 1 0:0234375
D3 2 (03432597963530763 D3 2 02192402036469236
Case 3a 3 %703125 Case 3b 3 :B703125
4 0:2192402036469236 4 :8132597963530763
5 0:0703125 5 0:0703125
6 0:01058006788230788 6 0:05191993211769211
7 0.0234375 7 0234375

Note 1 D 2:977273091796802,, D 2:239549738364678.

9.2. Coiflets of Length 18

A similar analysis can be done for filters of length 18. In Tahleve present a summary
of our findings by listing the filter coefficients for two cases: coiflets with integers shift:
and maximal coiflets. Filter coefficients are listed in Tahle

Even at higher numbers of vanishing moments and different lengths, we still four
UGLY and BAD filters. They always correspond to coiflets with integer shifts, but it is
not a peculiarity of that case. Varying we found regions of nonmaximal coiflets with a
similar behavior.
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TABLE 3
Summary of All Maximal Coiflets and Coiflets with Integer Shifts for Length 8
Filter M N kQk oM 1 Remarks
Na 2.97727 3 5 1.45584 2.8764 4
Nb 2.23955 3 5 1.44599 2.94511 4
Ma 1.00539 4 3 1.77557 5.91608 8 Daubechies’ Extremal Phase
Mb 2.98547 4 3 1.77557 5.91608 8 Daubechies’ Least Asymmetric
la 1 3 3 1.77528 2.16403 4
1b 1 3 3 0.14666 14.9356 4 BAD
2a 2 3 3 1.42232 3.11099 4
2b 2 3 3 0.93596 6.91099 4 UGLY
3a 3 3 3 1.77341 2.16473 4
3b 3 3 3 1.46353 2.82288 4

Note Coefficients are listed in Table 2. The maximal case for wavelets coincides with Daubechies’ maximally

flat filters.

In Figs.11and12, we plottedjmgj and” for the cases 6¢ (UGLY) and 5b (BAD) with
length 18. The cases 7d and 6d, as listed in TApdxhibit a similar behavior. Even though
their filter moduli do not oscillate as much as their counterparts of length 8, their behavior

is clearly different than those for whickQk remains below ¥ 1. As an example of
the latter situation, consider the filter 7c. The associated wavelet has only six vanishing
moments, but its Sobolev exponent is higher than the exponent for Daubechies’ wavelets

which have nine vanishing moments.
Note that in all the plots for wavelets in the Fourier domain, the support of the functions

is actually wider than shown.

FIG. 3. Integer shift coiflet: length 8, shift 2, case b (UGLY). Plots of absolute value of filieand scaling

function.

FIG. 4. Integer shift coiflet: length 8, shift 1, case b (BAD). Plots of absolute value of filieand scaling

function.
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FIG.5. Integer shift coiflet: length 8, shift 2, case a. Plots of scaling function and filger
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FIG. 6. Integer shift coiflet: length 8, shift 2, case a. Plots of wavelet function in both time and Fourie
domain (absolute value, phase, and group delay).

FIG. 7. Integer shift coiflet: length 8, shift 3, case a. Plots of scaling function and filger
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FIG. 8. Integer shift coiflet: length 8, shift 3, case a. Plots of wavelet function in both time and Fourier
domain (absolute value, phase, and group delay).
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FIG. 10. Maximal coiflet for scaling function: length 8, shift9773. Plots of the wavelet function in both
time and Fourier domain (absolute value, phase, and group delay).
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205

Summary of All Maximal Coiflets, Coiflets with Integer Shifts, and Two Daubechies’ Maximally
Flat Filters for Length 18

Filter M N kQk oM 1 Remarks
Na 7.81041 6 9 2.5149 16.5942 32 Listed in Table
Nb 7.1771 6 9 2.49853 17.2438 32 Listed in Table
Ma 5.94301 7 7 2.74543 33.9874 64 Listed in Table
Mb 4.5681 7 7 2.71944 36.2534 64 Listed in Table
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FIG. 13. Maximal coiflet for scaling function: length 18, shift 7.1771. Plots of filrey and scaling function.

10. CONCLUSION

The approach taken in this paper allows one to construct and classify coiflets, which
are wavelets with a high number of vanishing moments for both the scaling and wavelet
functions. Coiflet filters are useful in applications where interpolation and linear phase are
of particular importance.

We introduced a new system for FIR coiflets. In all cases investigated, the system had a
minimal set of defining equations. For filters of length up to 20, the system can be solved
explicitly, and the filter coefficients can thus be accurately determined. For longer filters
we applied numerical methods to compute some solutions. For a few specific examples we
studied the properties of coiflets corresponding to both integer and noninteger values of the
first moment of the scaling function. Nevertheless, the problem of the existence of coiflet
filters of arbitrary length and their full classification remains open.

FIG. 14. Maximal coiflet for scaling function: length 18, shift 7.1771. Plots of wavelet function in both time
and Fourier domain (absolute value, phase, and group delay).
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TABLE 5
Coiflet Filters of Length 18: Maximal Case

k hg k hi
M D6 0 0:00006423105557385401 M D6 0 0:0002036914946771235
ND9 1 0:0002979447888413989 ND9 1 0:0002488151932121008

D 1 2 0:0004927238418624587 D » 2 0:00221156402899935

Case Na 3 M04159721116204626 Case Nb 3 :0@6347581803838808

4 0:001356751057023208 4 0:02049652597342785

5 0:03424128516618039 5

0:034353284830D 47264271
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From A.1) and A.3)

X
Z2"D"f.z/D  s).xD/*F .z (A.4)
kDO
Note that for a polynomial of degreg it is not true thatxD/"P .1/ is zero forn >r.
However, these values are linear combinationsx@/"P .1/ forn r, as we show in the
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