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values and the range of control strengths that yield stable
control. While heterogeneity can be beneficial for robustness
to random node failures [34], our results suggest that a more
homogeneous degree distribution might be preferable for situ-
ations where control of a large range of macroscopic network
activity levels is important.

A common critique of the hypothesis that the cerebral
cortex may operate near criticality is that critical dynamics are

too noisy, as reflected in the large fluctuations in Fig. 1(a). For
many aspects of brain function it is easy to imagine that these
large fluctuations would cause trouble. However, our primary
result here is that the noisy dynamics of criticality are, in fact,
easy to control. This suggests that a brain might be able to
take advantage of the other functional benefits of criticality
while controlling its own noise to remain at a manageable
level.
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