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Optimal control of excitable systems near criticality
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A large body of experimental evidence supports the hy-
pothesis that the cerebral cortex operates at, or very near,
the critical point of a phase transition [1–5]. Consequently,
many efforts have been made to identify and understand the
functional benefits of operating in this regime [6], including
maximized dynamic range [7–9] and maximized information
transmission and capacity [10–12]. Both experiments and
models have shown that networks operating in the critical
regime visit the largest variety of microscopic and macro-
scopic states [10,13,14]. It has been hypothesized that these
states could be harnessed by the network to encode and trans-
fer information [15]. In this paper, we identify a way that
criticality may be beneficial in neural systems. We show that,
at criticality, the activity of the system can be controlled with
minimal error over the largest range of activity levels. In ad-
dition, by analytically treating the network’s deviations from
linear dynamics, we show that heterogeneity in the network’s
degree distribution reduces this controllable range consider-
ably. Understanding the controllability of a neural system
may be important for designing effective therapeutic brain
stimulation, closed-loop brain-machine interface systems, and
understanding basic experimental studies of optogenetic con-
trol of neural activity [16,17].
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There has been a significant amount of work in quan-
tifying the controllability of functional brain networks and
networked dynamical systems. The main methodology for
studying control of brain networks has been to assume an
approximate linear evolution model for the node state vector
st on a network derived from functional Magnetic Resonance
Imaging (fMRI) experiments (e.g., [18]) or from complete
connectomes [19] of the form st+1 = Ast + u, where

of the node state vector, the Perron-Frobenius eigenvalue of
the matrix A, λ, is typically assumed to be fixed at a value
less than 1 to guarantee stability of the uncontrolled system.
In contrast, here we are specifically interested in the relation
between control performance and the proximity of the system
to the critical state where activity is neither amplified nor
damped, i.e., to λ = 1, and therefore, we consider λ as our
main parameter of interest. In addition, we consider nonlinear
evolution of the form s

t+1 = σ (Ast
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to a target state but in minimizing the error when trying to
maintain a macroscopic variable (e.g.75s4EARCH
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In addition, the error computed theoretically from the activity
S found by solving Eq. (8) (symbols) agrees qualitatively
with the one obtained numerically from simulations of the
full system (solid line), with quantitative agreement except
for large values of S. Networks with a homogeneous degree
distribution and λ = 1 have the largest controllable range.
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values and the range of control strengths that yield stable
control. While heterogeneity can be beneficial for robustness
to random node failures [34], our results suggest that a more
homogeneous degree distribution might be preferable for situ-
ations where control of a large range of macroscopic network
activity levels is important.

A common critique of the hypothesis that the cerebral
cortex may operate near criticality is that critical dynamics are

too noisy, as reflected in the large fluctuations in Fig. 1(a). For
many aspects of brain function it is easy to imagine that these
large fluctuations would cause trouble. However, our primary
result here is that the noisy dynamics of criticality are, in fact,
easy to control. This suggests that a brain might be able to
take advantage of the other functional benefits of criticality
while controlling its own noise to remain at a manageable
level.
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