Onset of synchronization in large networks of coupled oscillators
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We study the transition from incoherence to coherence in large networks of coupled phase oscillators. We
present various approximations that describe the behavior of an appropriately defined order parameter past the
transition and generalize recent results for the critical coupling strength. We find that, under appropriate
conditions, the coupling strength at which the transition occurs is determined by the largest eigenvalue of the
adjacency matrix. We show how, with an additional assumption, a mean-field approximation recently proposed
is recovered from our results. We test our theory with numerical simulations and find that it describes the
transition when our assumptions are satisfied. We find that our theory describes the transition well in situations
in which the mean-field approximation fails. We study the finite-size effects caused by nodes with small degree
and find that they cause the critical coupling strength to increase.
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Il. SELF-CONSISTENT ANALYSIS

As shown by Kuramoto 6\, the dynamics of weakly
coupled, nearly identical limit cycle oscillators can, under
certain conditions, be approximated by an equation for the
phasegy, of the form

N
Un:Vn+anmUm_Una 2
m=1

wherev,, is the natural frequency of the oscillatorN is the

total number of oscillators, an¥,,,, is a periodic function
depending on the original equations of motion. The all-to-all
Kuramoto model assumes that,, u,—u, = k/N sin uy,

- U, , wherek represents an overall coupling strength. In
order to incorporate the presence of a heterogeneous net-
work, we assume thaf ,,, U= Uy, =KAyy,SIN U= U, , Wwhere
Anmgo are the elements of @43 N adjacency matriA de-
termining the connectivity of the network. Therefore, we
study the system

N
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For specificity, we will primarily consider the case where
the A, are either Onodesn andm are not connectecbr 1
nodesn and m are connected, and all connections have
equal strength We assume that the network is undirected, so
that A,.=An, We assume also that, for eaohthe corre-
spondingv,, is independently chosen from a known oscilla-
tion frequency probability distributiog v . We assume that
g v is symmetric about a single local maximurf. Sec.
V , which without loss of generality we can take to be at
v=0. If the mean frequency is;# 0, we make the change
of coordinates that shifts eaah, by v, and eachy, by vqt.
In this case, synchronization will occur at frequency O; i.e.,
u, will remain approximately constant for synchronized
nodes.
We define a positive real-valued local order parameter
by
N
ren= 2 A€, 4
m=1

where----; denotes a time average. In termsrgf Eq. 3
can be rewritten as

Uy=V,—kr,sinu,— ¢, —kh, t,



the real part equation8 can be neglected because of the
symmetry ofg v about 0. We thus obfain the approximation

Vin |2
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Since we are interested in the transiti
look for the solution of Eq.

n to coherence, we



where

r=r +at,

19



expansion is appropriate fgr- 5. For 3% g#&5, he obtains
in the limit N— “ that r scales near the transition as
~ klkn—1 Y 973 | A similar situation occurs in the perturba-
tion theory/ Egs. 22 and 231, which was also based on
expandingg to second order. According to the previous dis-
cussion, we will only use the expression foobtained from
the perturbation theory for situations in whicdf' - is finite.



large N too large for us to simulateln fact, asN— “, 1

diverges while d® /- d_remains finite. Thus, the critical cou-

pling constant obtained from our theory approaches zero d§me dependent but its statistical properties remain con-
N— “, while the one obtained from the mean-field theorystant in time. From the values ofy,t obtained for a
remains constant. This suggests that the few nodes with highiven k, the order parameter is estimated asr

degree are able, for large enoulhto synchronize the net- %«Z#Fldmfei“m4/zmzldn{, where the time average is taken
work and that these nodes are not taken into account by thefter the system reaches the stationary staitose to the
mean-field theory. transition, the time needed to reach the stationary state is

For g, 3, we observe from Fig. 2 thak is less than very long, so that it is difficult to estimate the real value of
-d? /-d_whenN=5000. Thus, in this range, the mean-field This problem also exists in the classical Kuramoto all-to-all
theory predicts a transition for a coupling constant that isnodel. The value ofk is then increased and the system is
smallerthan that predicted by the perturbative approach. Irallowed to relax to a stationary state, and the process is re-
the next section we will show, for a numerical example inpeated for increasing values kf
this regime, that the transition occurs for a larger coupling In Fig. 3 we show the results for the network with a
than that predicted by the mean-field theory. uniform degree distribution as described abavetwork i L.

We plotr? from numerical solution the full system in EQ
triangles, the theoretical prediction from the time-averaged
. EXAMPLES theory solid line, and the prediction from the mean-field
) . .theory long-dashed lineand from the perturbation theory

In order to test the results in Sec. Il, we choose a distri- ghort-dashed line see Table |as a function ok/k., where
bution for the natural frequencies given lgyv = 3/4 1 s given by Eq. 16 . The frequency distribution approxi-
-Vv? for -1, v, 1 andg v =0 otherwise. In order to gen- mation agrees with the time-averaged theory, so we do not
erate the network, we specify a degree distribution and Wencjude it in the plot. In this case, all the theoretical predic-
use the “configuration” modele.g., Sec. 4.2.1 of Refll  tions provide good approximations to the observed numerical
and references thereiro generate a random net_worf< real- results. The time-averaged theory reproduces remarkably
ization with the specified degree distribution:we first gen-  well the numerical observations. Even the irregular behavior
erate adegree sequencky assigning a degred, to each  near the transition is taken into account by the time-averaged
noden according to the given distributionj imagining that  theory. The mean-field theory is in this case a good approxi-
each noden is givend, spokes sticking out of it, we choose mation, providing a fair description of the order parameter

pairs of spoke ends at random and connect them. past the transition. The perturbation theory is valid in this
We consider a fixed number of nodeé=2000, and the case up tdk/k,~1.3.
following networks with uniform coupling strengthi.e., The results for the networks with power-law degree dis-

Anm=1 or 0: i the degrees are uniformly distributed be- tributions networks ii i are shown in Figs. 4, 4b, 4c,
tween 50 and 149, and the probability of having a degree and 4d for g=2, 2.5, 3, and 4, respectively. The order pa-
dis given byp d ~d™9 if 504 d#2000 andp d =0 other-  yrameterr2 from numerical solution of the full system in Eq.
wise, whereg is taken to be 2, 2.5, 3, and 4ur choice 3 triangles, the time-averaged theorgolid line, the fre-
p d =0 ford, 50 ensures that there are no nodes of smaluency distribution approximatiosstars, and the mean-field
degree and suggests that our approximation of neglecting theory long-dashed line
noiselike, fluctuating quantity, in Eq. 5 is valid. We re-
turn to this issue in Sec. \l.

The initial conditions for Eq.3 are chosen randomly in
the interval 0,2pl and Eq. 3 is integrated forward in time
until a stationary state is reachesiationary state here means
stationary in a statistical sense; i.e., the solution might be



laws with exponents between 2 and 3152, 15. In order to
accurately predict the critical coupllng strength across this
range of exponents, the critical coupling constant given by
k.=ko/ I determined by the largest eigenvalue of the adja-
cency matrix should be used. The behavior of the order pa-
rameter can be estimated using the time-averaged theory or
the frequency distribution approximation. These two ap-
proximations were found to be consistently accurate for the
range of exponents and values of the coupling constant stud-
ied. For the value oN used, the mean-field theory works
well in predicting the critical coupling strength and the be-
havior of the order parameter if one is interested in values of
g larger than 3.

Tables Il and IIl present the results of comparing the the-
oretical predictions with the numerical integration of ES§j.
for different networks. Table Il compares the observed criti-
cal coupling strength with the theoretical estimate. If both
are close, the entry is “G,” and otherwise “NG.” Table I
compares the predicted behavior of the order parameter past
the transition with the observed one. If the corresponding
entry in Table Il is “NG,” no comparison is attempted. The
entries are the range &k, over which the corresponding

sharper transition than actually occurs. The mean-field ap-
proximation agrees closely with the frequency distribution
approximation forg=4 and, away from the transition, for
g=3. However, forg=2 andg=2.5, it deviates greatly from
the other approximations and from the numerical simulation.
The critical coupling strengths predicted by the mean-field
theory and by the perturbation theory are very closegor
=4, but the mean-field theory predicts a transition at about
10% smaller coupling forg=3, about 20% smaller foy
=2.5, and about 40% smaller fg=2. Since the transition in
the numerical simulation is not so well defined, both ap-
proximations are reasonable fg=3, but for g=2 andg
=2.5 the critical coupling strength predicted by the mean-
field approximation is clearly too small.

In the past years, it has been discovered that many real-
world networks have degree distributions which are power






condition, which we assume to be randomly drawn from
,0,2p . In this section, by----_ we mean an expected
value—i.e., an ensemble average, rather than an average over
torn.



valid in this case, we find that it correctly describes the trend
present in the numerical observations—i.e., a shifting of the
transition to coherence to larger values of the critical cou-
pling as nodes of small degree become important.

VII. DISCUSSION

A transition to coherence in large networks of coupled
oscillators should be expected at a critical value of the cou-
pling strength which is determined by the largest eigenvalue
of the adjacency matrix of the network and its associated
eigenvector. In the all-to-all case, the largest eigenvalue is
N-1=N and thus the Kuramoto resutt=ky/N is recov-
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We will follow to some extent Chap. 12 of R/eiﬂ. The time
average is given by

cgltm = €Ypy U du, A2
<P
wherep,, v du is, given thé connections of node and its
natural frequency/,



kN Ab K N b*ezmgt If, as proposed in Sec. VI, there are fluctuations in the
bj=-2 -+ -e@msty I C6  valuesofy t suchthaw? t =v,t+ F+W, t, whereW, t
2p21S-1v, 2 =1 S tiv,

is a random walk such thaw, t =0 and W, t 2 =2Dt,

The second sum is very small due to the incoherence of th&e take the expected value of EES . We use tge fact that

equation -eX =& *S2 |n this casex=V,, t'~t ands?=2D,, t-t' .
N We obtain, after performing the integration,
_kK'9 Awnbm
by=22 ——, Cc7 N
21 S71Vin b —Ez AmrPm cs
as claimed in Sec. V. " 25 s+ Dp—ivy
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