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 Ĉ zz0 � �dout�0P�z0jz�; (1)

where z � �din; dout�. We note that our locally treelike
condition for directed networks is analogous to assuming
negligible clustering.

In many situations the node removal probability is not a
constant. For example, airports might have different secur-
ity measures, or differ in their vulnerability to an attack or
weather related shutdown due to their geographical loca-
tion. Also, we have noted recently [14] that a measure of
the dynamical importance of node i is proportional to viui,
where u and v are the right and left eigenvectors corre-
sponding to the largest eigenvalue



m, the number of paths of length m grows like �m, we
associate to the previous equation the eigenvalue problem
�M z � doutP

z0P�z
0jz� z0 , where �M is the Markovian

approximation to �. The previous result agrees with
Eq. (1) [the matrices doutP�z0jz� and �dout�0P�z0jz� have
the same spectrum]. We note that, in the absence of degree-
degree correlations, we have P�z0jz� � dinP�z0�=hdi,
which yields the mean field approximation for the eigen-
value, �mf � hdindouti=hdi. This agrees with the results in
Ref. [10], where the effect of bidirectional edges is con-
sidered, and, for uncorrelated networks, a formula inter-
polating between �mf (when bidirectional edges are rare)
and the undirected result �hd2i=hdi� � 1 is found. This
supports our claim that, if short closed paths are rare,
then � should be a good approximation to the threshold.

We now illustrate our theory with two numerical ex-
amples and one real network. Example 1 illustrates the
flexibility of our approach to address various weighted
percolation node removal strategies, while example 2 il-
lustrates the point that our approach does not require the
knowledge or applicability of a Markov network model.
We note that the networks in consideration are sparse,
which allows us to use efficient techniques to compute
the largest eigenvalue.

Example 1.—For simplicity, we consider uncorrelated
random networks with degree distributions P�din; dout� in
which din and dout are independent and have the same
distribution ~P�d�, that is, P�din; dout� � ~P�din� ~P�dout�. We
use a generalization of the method in Ref. [16] in order to
generate networks with a power law degree distribution,
~P�d� / d��. We choose the sequence of expected degrees
~din
i � c�i� i0 � 1��1=���1� for the in-degrees, and a ran-

dom permutation of this sequence for the out-degrees,
where i � 1; . . . ; N, and c and i0 are chosen to obtain a
desired maximum and average degree. Then, the adjacency
matrix is constructed by setting Aij � 1 for i � j with
probability ~dout

i
~din
j =�Nhdi� and zero otherwise (Aii � 0).

The ensemble expected value of the resulting network
degree distribution is given by P�din; dout�. (Note that we
assume ~dout

i
~din
j < Nhdi.) In Fig. 1(a) we show, for a N �

2000 scale free network with exponent � � 2:5 and hdi �
3, the size of GIN as a function of the number of removed




