Predicting Criticality and Dynamic Range in Complex Networks: Effects of Topology
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The collective dynamics of a network of coupled excitable systems in response to an external stimulus
depends on the topology of the connections in the network. Here we develop a general theoretical
approach to study the effects of network topology on dynamic range, which quantifies the range of
stimulus intensities resulting in distinguishable network responses. We find that the largest eigenvalue of
the weighted network adjacency matrix governs the network dynamic range. When the largest eigenvalue
is exactly one, the system is in a critical state and its dynamic range is maximized. Further, we examine
higher order behavior of the steady state system, which predicts that networks with more homogeneous
degree distributions should have higher dynamic range. Our analysis, confirmed by numerical simulations,
generalizes previous studies in terms of the largest eigenvalue of the adjacency matrix.
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Numerous natural [1,2] and social [3] systems are accu-
rately described as networks of interacting excitable nodes.
The collective dynamics of such excitable networks often
defy naive expectations based on the dynamics of the
single nodes which constitute the network. Recent experi-
ments in neural networks [4] suggest that their dynamic
range (the range of stimuli over which there is significant
variation in the collective response of the network) is
maximized in a critical regime in which neuronal ava-
lanches [5] occur, confirming earlier theoretical predic-
tions [2]. It has been argued [2,4] that this critical regime
occurs when the expected number of excited nodes pro-
duced by one excited node is one. However, this criterion
is invalid for networks with broad degree distributions
[6,7]. A general understanding of how dynamic range
and criticality depend on network structure remains
lacking. In this Letter, we present a unified theoretical
treatment of stimulus-response relationships in excitable
networks, which holds for diverse networks including
those with random, scale-free, degree-correlated, and as-
sortative topologies.

As a tractable model of an excitable network, here we
consider the Kinouchi-Copelli model [2], which consists of
N coupled excitable nodes. Each node i can be in one of m
states x;. The state x; = 0 is the resting state, x; = 1 is the
excited state, and there may be additional refractory states
X;i =2;3;...;m— 1. At discrete times t=0;1;... the
states of the nodes x! are updated as follows: (i) If node i
is in the resting state, xt = 0, it can be excited by another
excited node j, xj = 1, with probability A;;, or indepen-
dently by an external process with probability . The
network topology and strength of interactions between
the nodes is described by the connectivity matrix
A = {Aj;}. In this model, is considered the stimulus
strength. (ii) The nodes that are excited or in a refractory
state, x! = 1, will deterministically make a transition to the
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next refractory state if one is available, or otherwise return
to the resting state (i.e, X"t =xt + 1if 1 = xt<m — 1,
and Xt =0 if xt = m — 1).

An important property of excitable networks is the
dynamic range, which is defined as the range of stimuli
that is distinguishable based on the system’s response F.
Following [2
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network response F changes its qualitative behavior. In

particular, lim _oF =0 if <1 and lim _oF>0 if
> 1. In addition, the dynamic range of the network

was found to be maximized at = 1. The parameter

is defined in Refs. [2,4] as an average branching ratio,

written here as =& Y;A; = (



with power-law exponents € [2:0; 6:0], with and without
node degree correlations; (category 5) networks con-
structed with (d) = 1, and assortativity coefficient
varying in [0:7; 1:3]; (category 6) networks with weights
which depend on the degree of the node from which the
edge originates, Aj; = =d{*".

We created networks in multiple steps: first, we created
binary networks (A;; € {0; 1}) with target degree distribu-
tions as described below; next, we assigned a weight to
each link, drawn from a uniform distribution between
0 and 1; finally, we calculated



corroborates the numerical findings in Refs. [2,7] that
random graphs enhance dynamic range more than more
heterogeneous scale-free graphs, and that the heterogeneity
of the degree distribution affects dynamic range [7]. To test
our result, we simulate scale-free networks with different
power-law exponents & [2:0;6:0], yet with =1 to
maximize dynamic range in each case. Results of simula-
tion (circles) plotted against the prediction of Eqg. (9) (line)
are shown in Fig. 3.

In summary, we analytically predict and numerically
confirm that criticality and peak dynamic range occur in
networks with largest eigenvalue = 1. This result holds
for diverse network topologies including random, scale-
free, assortative, and/or degree-correlated networks, and
for networks in which edge weights are related to nodal
degree, thus generalizing previous work. Moreover, we
find that homogeneous (heterogeneous) network topolo-
gies result in higher (lower) dynamic range. Previous
demonstrations of how  governs network dynamics in
many other models (see [19] and references therein) sug-
gest that the generality of our findings may extend beyond
the particular model studied here. Taken together with
related experimental findings [4], our results are consistent

with the hypotheses that (1) real brain networks operate
with =1, and (2) if an organism benefits from large
dynamic range, then evolutionary pressures may act to
homogenize the network topology of the brain.
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