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I. INTRODUCTION 

By analyzing the growth or decay from scale to scale 
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By direct examination of (2.7) and (2 .10) .  we find that both cf, 

Finally, cf,(x) and q ( x )  have vanishing moments, 
and q are supported within the interval [ - L  + I ,  L - I]. 

+ m  

m~ = j' x ' " q ( x )  c.tx = 0 f o r o  5 m 5 L,  (2.11) 
-m 

and 

+m j' @(x) dx = 1 .  (2.13) 
-cc 

It is easy to verify (see [2]) that even moments of the coefficients 
q k  - I from ( 2 . 5 )  vanish, namely 

L / 2  

a2 , - , (2k  - l)zm = 0 for 1 5 m 5 M - 1 (2.14) 
k =  I 

where M = L / 2  (for wavelets in (71). Since L consecutive mo- 
ments of the auto-correlation function * (x) vanish (2. l l ) ,  we have 
for small I(E1 

@((E) = W L )  (2.15) 

where @((E) is the Fourier transform of *(x). Thus, @((E) may be 
viewed as the symbol of a pseudo-differential operator which be- 
haves like an approximation of the derivative operator ( d / d ~ ) ~ .  
Therefore, the operator of convolution with 9 (x) behaves essen- 
tially like a differential operator in detecting changes of spatial in- 
tensity. We display functions cf, (x), p (x), * (x), $ ( x ) ,  and the mag- 
nitudes of their Fourier transforms in Figs. 1 and 2.  

Let us briefly review the relation of the auto-correlation func- 
tions in (2.1) and (2.8) to the iterative interpolation scheme. Let 
B, be the set of dyadic rationals m/2", m E Z and n = 0, 1 ,  2 ,  
. . .  . Following [9] and [ lo] ,  let us consider the following prob- 
lem: given values of f ( x )  on Bo, extend f to B , ,  B,, . . . in an 
iterative manner. For x E B, + B,, Dubuc [ 101 suggested the fol- 
lowing formula to compute the valuef(x), 

9 
f ( x )  = 16 ( f ( x  - h) + f(. + h ) )  

1 
- 16 ( f ( x  - 3h)  + f ( x  + 3h)) (2.16) 

where h = 1 /2" + I .  We illustrate a few steps of this iterative pro- 
cess applied to the unit impulse in Fig. 3. 

This interpolation scheme is generalized further in [9], 

f ( x )  = C F(k/2)f(x + kh) fo rx  E B,+,\B, (2.17) 

where h = 1 / 2 " + ' ,  and the coefficients F(k/2)  are computed by 
generating the function satisfying 

F(x/2) = XzF(k /2 )F(x  - k ) .  

k c Z  

(2.18) 

Using the Lagrange polynomials with L = 2 M  nodes, we have 
M 

f ( ~ )  = C @ i i - ' I ( O ) ( f ( ~  - (2k - 1)h) + f(x + (2k - 1)h)) 
k =  I 

(2.19) 

where {si,-_' - M  + I is a set of Lagrange polynomials of 
the degree L - 1 with nodes { - L  + 1 ,  - L  + 3, . . . , L - 3, L 

Fig. 1. Plots of the auto-correlation function % (x) and 










